Lecture 9: Convolution

ECE 401: Signal and Image Analysis

University of Illinois

3/2/2017

(1) Impulse Response Review
(2) A Signal is Made of Impulses
(3) Graphical Convolution

4 Properties of Convolution

Outline

(1) Impulse Response Review
(2) A Signal is Made of Impulses
(3) Graphical Convolution

4 Properties of Convolution

Impulse Response

- The "impulse response" of a system, $h[n]$, is the output that it produces in response to an impulse input.

Definition: if and only if $x[n]=\delta[n]$ then $y[n]=h[n]$

- Given the system equation, you can find the impulse response just by feeding $x[n]=\delta[n]$ into the system.
- If the system is linear and time-invariant (terms we'll define later), then you can use the impulse response to find the output for any input, using a method called convolution that we'll learn in two weeks.
- For today, let's get some practice at finding the impulse response from the system equation.

Impulse Response Review

Here is a system. What is its impulse response?

$$
y[n]=\frac{1}{3}(x[n-1]+x[n]+x[n+1])
$$

Outline

(1) Impulse Response Review

(2) A Signal is Made of Impulses
(3) Graphical Convolution

4 Properties of Convolution

Shifted Impulse Response

- Suppose some system has impulse response $h[n]$.
- Suppose we put in the input $x[n]=\delta[n-3]$.
- Then the output will be $y[n]=h[n-3]$.
- Example:

$$
h[n]= \begin{cases}0.33333 & -1 \leq n \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Scaled Impulse Response

- Suppose some system has impulse response $h[n]$.
- Suppose we put in the input $x[n]=15 \delta[n-3]$.
- Then the output will be $y[n]=15 h[n-3]$.
- Example:

$$
h[n]= \begin{cases}0.33333 & -1 \leq n \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Scaled Impulse Response

- Suppose some system has impulse response $h[n]$.
- Suppose we put in the input $x[n]=x[3] \delta[n-3]$.
- Then the output will be $y[n]=x[3] h[n-3]$.
- Example:

$$
h[n]= \begin{cases}0.33333 & -1 \leq n \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Adding Impulse Responses

- Suppose some system has impulse response $h[n]$.
- Suppose we put in the input $x[n]=x[3] \delta[n-3]+x[4] \delta[n-4]$.
- Then the output will be $y[n]=x[3] h[n-3]+x[4] h[n-4]$.
- Example:

$$
h[n]= \begin{cases}0.33333 & -1 \leq n \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Adding Impulse Responses

- Suppose some system has impulse response $h[n]$.
- Suppose we put in the input

$$
x[n]=\sum_{m=-\infty}^{\infty} x[m] \delta[n-m]
$$

- Then the output will be

$$
y[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

- Example:

$$
h[n]= \begin{cases}0.33333 & -1 \leq n \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Adding Impulse Responses

- Suppose some system has impulse response $h[n]$.
- Suppose we put in the input

$$
x[n]=\sum_{m=-\infty}^{\infty} x[m] \delta[n-m]
$$

- Then the output will be

$$
y[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

- Example:

$$
h[n]= \begin{cases}0.33333 & -1 \leq n \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Definition of Convolution

- Here's the trick: $x[n]$ is always equal to

$$
x[n]=\sum_{m=-\infty}^{\infty} x[m] \delta[n-m]
$$

- Therefore $y[n]$ is always equal to

$$
y[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

- The above algorithm is called "convolution," and it has a special symbol:

$$
y[n]=h[n] * x[n]
$$

Definition of Convolution

Definition of Convolution

$$
h[n] * x[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

Outline

(1) Impulse Response Review

(2) A Signal is Made of Impulses
(3) Graphical Convolution

4 Properties of Convolution

Time Reversal

Suppose we try to plot $h[-m]$ as a function of m. The result looks like $h[m]$, but flipped around in time. Example:

$$
\begin{aligned}
h[m] & = \begin{cases}1 & 0 \leq m \leq 3 \\
0 & \text { otherwise }\end{cases} \\
h[-m] & = \begin{cases}1 & -3 \leq m \leq 0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Shifted Reversal

Suppose we try to plot $h[n-m]$ as a function of m. The result looks like $h[m]$, but flipped in time, and shifted by n. Example:

$$
\begin{aligned}
h[m] & = \begin{cases}1 & 0 \leq m \leq 3 \\
0 & \text { otherwise }\end{cases} \\
h[n-m] & = \begin{cases}1 & n-3 \leq m \leq n \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Graphical Convolution

Suppose we're trying to calculate the function $y[n]$. The way we do it is:

- Plot $x[m]$ as a function of m.
- For each interesting value of n (do as many as necessary, until we understand the whole pattern)
- Plot $h[n-m]$ as a function of m.
- Plot $x[m] h[n-m]$ as a function of m.
- Compute $y[n]=\sum x[m] h[n-m]$

Example:

$$
\begin{aligned}
& h[m]= \begin{cases}1 & 0 \leq m \leq 3 \\
0 & \text { otherwise }\end{cases} \\
& x[m]= \begin{cases}1 & 0 \leq m \leq 3 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Outline

(1) Impulse Response Review

(2) A Signal is Made of Impulses
(3) Graphical Convolution
4) Properties of Convolution

Properties of Convolution: Commutative

$$
h[n] * x[n]=x[n] * h[n]
$$

Putting it another way,

$$
\sum_{m=-\infty}^{\infty} x[m] h[n-m]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]
$$

Properties of Convolution: Shift

Suppose

$$
y[n]=h[n] * x[n]
$$

Then

$$
y\left[n-n_{0}\right]=h\left[n-n_{0}\right] * x[n]=h[n] * x\left[n-n_{0}\right]
$$

In other words, if you shift the input or the impulse response, then the output gets shifted. If you shift both the input and impulse response, then the output gets shifted twice:

$$
y\left[n-2 n_{0}\right]=h\left[n-n_{0}\right] * x\left[n-n_{0}\right]
$$

Properties of Convolution: Scaling

Suppose

$$
y[n]=h[n] * x[n]
$$

Then

$$
A y[n]=(A h[n]) * x[n]=h[n] *(A x[n])
$$

In other words, if you scale the input or the impulse response, then the output gets scaled. If you scale both the input and impulse response, then the output gets scaled twice:

$$
A^{2} y[n]=(A h[n]) *(A x[n])
$$

Properties of Convolution: Time Reversal

Suppose

$$
y[n]=h[n] * x[n]
$$

Then

$$
y[-n]=h[-n] * x[n]=h[n] * x[-n]
$$

In other words, if you time-reverse either the input or the impulse response, then the output gets shifted. If you time-reverse both the input and impulse response, then the output gets time-reversed twice-which cancels out the time-reversal!!!

$$
y[n]=h[-n] * x[-n]
$$

