
Sampling Review Interpolation and Upsampling Spectrum of Interpolated Signals

Lecture 7: Interpolation

ECE 401: Signal and Image Analysis

University of Illinois

2/9/2017



Sampling Review Interpolation and Upsampling Spectrum of Interpolated Signals

1 Sampling Review

2 Interpolation and Upsampling

3 Spectrum of Interpolated Signals



Sampling Review Interpolation and Upsampling Spectrum of Interpolated Signals

Outline

1 Sampling Review

2 Interpolation and Upsampling

3 Spectrum of Interpolated Signals



Sampling Review Interpolation and Upsampling Spectrum of Interpolated Signals

On-Board Practice

x(t) is sampled at Fs,1 = 16, 000 samples/second, creating a signal
x [n]. x [n] is then played back through an ideal D/A at a different
sampling rate, Fs,2 = 8, 000 samples/second, to create a signal
y(t). What is y(t)?

x(t) = 2 + 3 cos (2000πt) + sin (20, 000πt)
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Interpolation and Upsampling

Today we’ll learn upsampling, and four types of interpolation.

1 Upsampling: put zeros between the samples.

2 Piece-wise constant interpolation

3 Piece-wise linear interpolation

4 Piece-wise cubic spline interpolation

5 Sinc interpolation
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Upsampling

Upsampling changes the sampling rate by inserting zeros. Suppose
x [n] is sampled at Fs,1, and we want to change the sampling rate
to Fs,2 = MFs,1 for some integer M. Upsampling creates the signal
y [n]:

yups [n] =

{
x [m] n = mM
0 otherwise
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Piece-Wise Constant

Piece-wise constant interpolation creates

yPWC [n] = x [m], m = int
( n

M

)
where the int operator takes the integer part.

PWC interpolation can also be used as a kind of D/A, to
create a continuous-time signal:

yPWC (t) = x [m], m = int
( t

T

)
where T = 1

Fs
is the sampling period of x [m].

A PWC signal is discontinuous once every M samples.
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Piece-Wise Linear

Piece-wise linear interpolation creates

yPWC [n] = g

(
n −mM

M

)
x [m] +g

(
n − (m + 1)M

M

)
x [m+ 1]

PWL can also create a continuous-time signal:

yPWC (t) = g

(
t −mT

T

)
x [m] + g

(
t − (m + 1)T

T

)
x [m + 1]

PWL creates a continuous signal by using a continuous
interpolation kernel:

g(t) = max(0, 1− |t|)
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Piece-Wise Cubic Spline

Piece-wise cubic spline interpolation creates

yPWCS [n] =

n/M+2∑
m=n/M−2

g

(
n −mM

M

)
x [m]

PWCS can also create a continuous-time signal:

yPWCS(t) =

n/M+2∑
m=n/M−2

g

(
t −mT

T

)
x [m]

PWCS creates a continuous signal with continuous first
derivatives. This is done by using an interpolation function
that has continuous first derivatives:

g(t) =


1− |t|2 0 ≤ |t| ≤ 1
2(2− |t|)3 − 2(2− |t|)2 1 ≤ t ≤ 2
0 otherwise
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Sinc Interpolation

Sinc interpolation creates

ySINC [n] =
∞∑

m=−∞
g

(
n −mM

M

)
x [m]

Sinc interpolation can also create a continuous-time signal:

ySINC (t) =
∞∑

m=−∞
g

(
t −mT

T

)
x [m]

Sinc interpolation creates a continuous signal with all of its
derivatives continuous. It does this by using an
interpolation function that has all continuous derivatives:

g(t) = sinc(πt) ≡
{

sin(πt)
πt t 6= 0

1 t = 0
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Upsampling

Suppose a cosine with period T0 is upsampled by a factor of M:

x [n] = cos (2πn/T0)

y [n] =

{
x [m] n = mM
0 otherwise

Then y [n] is periodic with period MT0.
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Fourier Series of an Upsampled Cosine

Since y [n] has period MT0, it can be written with a Fourier series:

y [n] =

MT0−1∑
k=0

Yke
jkω0n/M , ω0 =

2π

T0

The coefficients Yk can be derived using Fourier series formula:

Yk =
1

MT0

MT0−1∑
n=0

y [n]e−jkω0n/M

Since y [n] is zero except at n = mM, we can write this as:

Yk =
1

MT0

T0−1∑
m=0

x [m]e−jkω0m

=

{ 1
2M kω0 = ±2π

T0
+ `2π, any integer `

0 otherwise
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Spectrum of an Upsampled Cosine

So
x [n] = cos (2πn/T0)

y [n] =

{
x [m] n = mM
0 otherwise

Then y [n] has the spectrum

Yω =

{ 1
2M ω = ± 2π

MT0
+ `2πM , for any integer `

0 otherwise
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Spectrum of an Interpolated Cosine

An interpolated cosine (PWC, PWL, or PWCS) has energy
only at the frequencies where the upsampled cosine has
energy, that is, at

ω = ± 2π

MT0
+ `

2π

M

The energy at the lowest harmonics (±2π/MT0) is nearly the
same for interpolation as for upsampling.

The better the interpolation, the more it damps out the
high-frequency harmonics:

|YPWCS ,ω|2 < |YPWL,ω|2 < |YPWC ,ω|2 < |YUPS ,ω|2, ω >
2π

MT0
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Spectrum of Sinc Interpolation

Sinc interpolation completely eliminates the higher harmonics.

x [m] = cos

(
2πm

T0

)

y [n] =
∞∑

m=−∞
sinc

(
π(n −mM)

M

)
x [m]

Gives the following result exactly:

y [n] = cos

(
2πn

MT0

)
It works in continuous time, too:

y(t) =
∞∑

m=−∞
sinc

(
π(t −mT )

T

)
x [m] = cos

(
2πt

TT0

)
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