Lecture 4: Fourier Series

ECE 401: Signal and Image Analysis

University of Illinois
1/26/2017

(1) Spectrum Review
(2) Periodic Signals
(3) Fourier Series

Outline

(1) Spectrum Review
(2) Periodic Signals
(3) Fourier Series

On-Board Practice

Can I have 3 volunteers to come try this one on the board? Thanks!

$$
z[n]=2+3 \cos (880 \pi t)+\sin (1760 \pi t)
$$

Plot the power spectrum, including positive, negative, and zero frequencies.

Outline

(1) Spectrum Review

(2) Periodic Signals

3 Fourier Series

Periodic Signal

A periodic signal is one that repeats every T_{0} seconds or every N_{0} samples. T_{0} or N_{0} is called the "period." For example:

$$
\begin{aligned}
& x(t)= \begin{cases}1 & 0 \leq t<\frac{T_{0}}{2} \\
-1 & \frac{T_{0}}{2} \leq t<T_{0} \\
x\left(t-T_{0}\right) & \text { otherwise }\end{cases} \\
& x[n]= \begin{cases}1 & 0 \leq n<\frac{N_{0}}{2} \\
-1 & \frac{N_{0}}{2} \leq n<N_{0} \\
x\left[n-N_{0}\right] & \text { otherwise }\end{cases}
\end{aligned}
$$

Fundamental Frequency

The "fundamental frequency" of $x(t)$ or $x[n]$ is the frequency of a cosine with the same period:

- $\Omega_{0}=\frac{2 \pi}{T_{0}}$ radians/second
- $F_{0}=\frac{1}{T_{0}}$ Hertz (cycles/second)
- $\omega_{0}=\frac{2 \pi}{N_{0}}$ radians/sample
- $f_{0}=\frac{1}{N_{0}}$ cycles/sample

Sums of Sinusoids

- A sum of sinusoids is periodic, with period equal to the least common multiple (LCM) of the nonzero periods.
- The fundamental frequency is the greatest common divisor (GCD) of the nonzero frequencies
- If the ratio of the two freqs is irrational, then their GCD is 0 , their LSM is infinity, and the signal is not periodic.

$$
\begin{aligned}
& x(t)=2+2 \cos (880 \pi t)+\sin (1760 \pi t), \quad \Omega_{0}=880 \pi, \quad T_{0}=\frac{1}{440} \mathrm{sec} \\
& x[n]=\cos (0.04 \pi n)+\sin (0.06 \pi n), \quad \omega_{0}=0.02 \pi, \quad N_{0}=\frac{1}{0.01}=100
\end{aligned}
$$

Outline

(1) Spectrum Review

(2) Periodic Signals
(3) Fourier Series

Joseph Fourier, 1768-1830

Fourier Series

Fourier showed that every periodic signal is the sum of sinusoids. For example,

$$
\begin{aligned}
x(t) & = \begin{cases}1 & 0 \leq t<\frac{T_{0}}{2} \\
-1 & \frac{T_{0}}{2} \leq t<T_{0} \\
x\left(t-T_{0}\right) & \text { otherwise }\end{cases} \\
& =\sum_{k=1, k \text { odd }}^{\infty} \frac{4}{\pi k} \sin \left(\frac{2 \pi k t}{T_{0}}\right)
\end{aligned}
$$

Principle of Orthogonality

The trick: cosines are orthogonal when integrated over one period. Suppose we take two different cosines:

$$
x(t)=e^{\frac{j 2 \pi \kappa t}{T_{0}}}, \quad y(t)=e^{\frac{j 2 \pi \ell t}{T_{0}}}
$$

Multiply $x(t)$ times $y^{*}(t)$, and integrate them over one period:

$$
\begin{gathered}
\int_{0}^{T_{0}} x(t) y^{*}(t) d t=\int_{0}^{T_{0}} e^{\frac{j 2 \pi k t}{T_{0}}} e^{\frac{-j 2 \pi \ell t}{T_{0}}} d t \\
=\int_{0}^{T_{0}} e^{\frac{j 2 \pi(k-\ell) t}{T_{0}}} d t \\
=\int_{0}^{T_{0}}\left(\cos \left(\frac{2 \pi(k-\ell) t}{T_{0}}\right)+j \sin \left(\frac{2 \pi(k-\ell) t}{T_{0}}\right)\right) d t \\
= \begin{cases}\int_{0}^{T_{0}} 1 d t=T_{0} & k=\ell \\
0 & k \neq \ell\end{cases}
\end{gathered}
$$

Finding the Fourier Coefficients

In order to find the Fourier coefficients, we first assume that $x(t)$ has a Fourier series representation. For example, just assume that, for some set of complex numbers X_{0}, X_{1}, \ldots, we can write:

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{\frac{j 2 \pi k t}{T_{0}}}
$$

Then we can find the $\ell^{\text {th }}$ coefficient, X_{ℓ}, by using the orthogonality principle:

$$
\int_{0}^{T_{0}} x(t) e^{\frac{-j 2 \pi \ell t}{T_{0}}} d t=T_{0} X_{\ell}
$$

because all of the other terms $(k \neq \ell)$ cancel out.

Fourier Series Summary

The method for computing the coefficients X_{k} from $x(t)$ is called the "forward transform:"

$$
X_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j k \Omega_{0} t} d t
$$

The method for computing the signal $x(t)$ from the Fourier series coefficients X_{k} is called the "inverse transform:"

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \Omega_{0} t}, \quad \Omega_{0}=\frac{2 \pi}{T_{0}}
$$

Spectrum; Parseval's Theorem

Notice that, at frequency $k \Omega_{0}$, the signal has power $\left|X_{k}\right|^{2}$.

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \Omega_{0} t}, \quad \Omega_{0}=\frac{2 \pi}{T_{0}}
$$

The power spectrum is therefore

$$
\left|X\left(k \Omega_{0}\right)\right|^{2}=\left|X_{k}\right|^{2}
$$

Parseval's theorem holds. The average power in the time domain is the same as the power in the frequency domain:

$$
\frac{1}{T_{0}} \int_{0}^{T_{0}} x^{2}(t) d t=\sum_{k=-\infty}^{\infty}\left|X_{k}\right|^{2}
$$

Fourier Series Example

$$
\begin{gathered}
x(t)= \begin{cases}1 & 0 \leq t<\frac{T_{0}}{2} \\
-1 & \frac{T_{0}}{2} \leq t<T_{0} \\
x\left(t-T_{0}\right) & \text { otherwise }\end{cases} \\
X_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j k \Omega_{0} t} d t \\
=\frac{1}{T_{0}} \int_{0}^{T_{0} / 2} e^{-j k \Omega_{0} t} d t-\frac{1}{T_{0}} \int_{T_{0} / 2}^{T_{0}} e^{-j k \Omega_{0} t} d t \\
=\frac{1}{-j k \Omega_{0} T_{0}}\left[e^{-j k \Omega_{0} t}\right]_{0}^{T_{0} / 2}-\frac{1}{-j k \Omega_{0} T_{0}}\left[e^{-j k \Omega_{0} t}\right]_{T_{0} / 2}^{T_{0}} \\
=\frac{\left((-1)^{k}-1\right)-\left(1-(-1)^{k}\right)}{-j k 2 \pi}= \begin{cases}\frac{4}{j k 2 \pi} & k \text { odd } \\
0 & k \text { even }\end{cases}
\end{gathered}
$$

Fourier Series: Other Forms

The Fourier series has three forms, called the exponential, trigonometric, and compact trigonometric forms. Your Ph.D. advisor might want you to know the other forms, and if so, you can look them up in the book. For this class, you only need to know the exponential form.

$$
\begin{gathered}
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \Omega_{0} t}, \quad \text { Exponential Form } \\
=\sum_{k=0}^{\infty} A_{k} \cos \left(k \Omega_{0} t\right)+\sum_{k=1}^{\infty} B_{k} \sin \left(k \Omega_{0} t\right), \quad \text { Trigonometric Form } \\
=\sum_{k=0}^{\infty} C_{k} \cos \left(k \Omega_{0} t+\theta_{k}\right), \quad \text { Compact Trigonometric }
\end{gathered}
$$

