Phasors Review	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones"

Lecture 3: Spectrum

ECE 401: Signal and Image Analysis

University of Illinois

1/26/2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Phasors Review	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones"
0	0000	00000	000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 Phasors Review

Over Spectrum and Energy Spectrum

Amplitude Modulation and "Beat Tones"

Phasors Review 0	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones" 000
Outline			

- 2 Complex Spectrum
- 3 Power Spectrum and Energy Spectrum
- 4 Amplitude Modulation and "Beat Tones"

Can I have 3 volunteers to come try this one on the board? Thanks!

$$z[n] = \cos\left(0.26\pi n - \frac{\pi}{3}\right) + \sin\left(0.26\pi n - \frac{\pi}{6}\right)$$

Find the phasors x and y, add them to find the phasor z, then convert it back to z[n]. Hint: this one is easiest if you remember that the phasor of $\cos(\omega n)$ is x = 1, whereas the phasor of $\sin(\omega n)$ is -j.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Phasors Review 0	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones" 000
Outline			

2 Complex Spectrum

3 Power Spectrum and Energy Spectrum

4 Amplitude Modulation and "Beat Tones"

How do we represent the information in a signal like

 $z(t) = 5\cos(300\pi t) + 3\sin(500\pi t)$

- Complex spectrum (in linear units)
- Power spectrum (Watts, or dB)
- Senergy spectrum (Joules, or dB)

Complex spectrum is based on inverting Euler's identity:

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

therefore

$$\cos(\omega t) = \frac{1}{2} \left(e^{j\omega t} + e^{-j\omega t} \right)$$
$$\sin(\omega t) = \frac{1}{2j} \left(e^{j\omega t} - e^{-j\omega t} \right)$$

Phasors Review 0	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones" 000
Complex	Spectrum		

For example

$$5\cos(300\pi t) + 3\sin(500\pi t) = \frac{5}{2}e^{j300\pi t} + \frac{5}{2}e^{-j300\pi t} + \frac{3}{2j}e^{j500\pi t} - \frac{3}{2j}e^{-j500\pi t}$$

therefore

Ω (radians/sec)	F (Hz)	$X(\Omega)$ (Complex Spectrum)
-500π	-250	$-\frac{3}{2i} = 1.5j$
-300π	-150	$\frac{5}{2} = 2.5$
300π	150	$\frac{5}{2} = 2.5$
500π	250	$\frac{3}{2i} = -1.5j$
		1

New concept: spectrum has content at **negative frequencies**. This is just a way of talking about sines vs. cosines, because sin(-x) = -sin x but cos(-x) = cos(x).

Phasors Review 0	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones" 000
The "D	[°] Term"		

For example

$$7+5\cos(300\pi t)+3\sin(500\pi t) = 7e^{j0} + \frac{5}{2}e^{j300\pi t} + \frac{5}{2}e^{-j300\pi t} + \frac{3}{2j}e^{j500\pi t} - \frac{3}{2j}e^{j500\pi t} + \frac{3}{2j}e^{j50\pi t} + \frac{3}{2j}e^{j50$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

there	fore		
	Ω (radians/sec)	F (Hz)	$X(\Omega)$ (Complex Spectrum)
	-500π	-250	$-\frac{3}{2i} = 1.5j$
	-300π	-150	$\frac{5}{2} = 2.5$
	0	0	- 7
	300π	150	$\frac{5}{2} = 2.5$
	500π	250	$\frac{3}{2j} = -1.5j$
Now	conconti adding a	constant	ic like adding a cosine at

New concept: adding a constant is like adding a cosine at frequency $\Omega=0.$

Phasors Review 0	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones" 000
Outline			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 Complex Spectrum

3 Power Spectrum and Energy Spectrum

4 Amplitude Modulation and "Beat Tones"

Phasors Review 0	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones" 000
Power S	pectrum		

The power of any wave (sound, voltage, etc) is always proportional to the square of the wave. Acoustic wave: Watts = Pascals²/acoustic_ohms. Electric wave: Watts = Volts²/Ohms. And so on. Ignore the constant, and focus on the square.

$$z(t) = A\cos(2\pi Ft - \theta)$$

$$P_z = \text{Average} \left(A^2 \cos^2(2\pi Ft - \theta)\right)$$

$$= \text{Average} \left(A^2 \left(\frac{1}{2} + \frac{1}{2}\cos(4\pi Ft - 2\theta)\right)\right)$$

$$= \frac{A^2}{2}$$

New concept: power of any sinusoid is independent of its phase.

Phasors Review	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones"
0		○●○○○	000
Power Si	pectrum		

The power of the sinusoid $(A^2/2)$ gets divided between the positive-frequency half $(A^2/4)$ and negative-frequency half $(A^2/4)$, thus

 $z(t) = 7 + 5\cos(300\pi t) + 3\sin(500\pi t)$

has the following power spectrum:

Ω (radians/sec)	F (Hz)	$ X(\Omega) ^2$ (Power Spectrum)
-500π	-250	9/4
-300π	-150	25/4
0	0	49
300π	150	25/4
500π	250	9/4

Phasors Review	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones"
		00000	

Parseval's Theorem

If z(t) is periodic with any period T_0 , then the average power can be computed in the time domain by averaging the square of the signal:

$$P_z = \frac{1}{0.02} \int_0^{0.02} \left(7 + 5\cos(300\pi t) + 3\sin(500\pi t)\right)^2 dt = 66$$

Or in the frequency domain by adding up the terms:

Ω (radians/sec)	F (Hz)	$ X(\Omega) ^2$ (Power Spectrum)	
-500π	-250	9/4	
-300π	-150	25/4	
0	0	49	
300π	150	25/4	
500π	250	9/4	
$P_z = \frac{9 + 25 + 25 + 9}{4} + 49 = 66$			

Parseval's Theorem: Power is same in time domain or in frequency domain.

Phasors Review 0	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones" 000
Decibels			

Humans hear loudness roughly in proportion to the logarithm of power. The **Level** of a signal is $10 \log_{10} |X(\Omega)|^2$:

Ω (radians/sec)	F (Hz)	$ X(\Omega) ^2$	$10 \log_{10} X(\Omega) ^2 (dB)$
-500π	-250	9/4	3.5dB
-300π	-150	25/4	8dB
0	0	49	17dB
300 <i>π</i>	150	25/4	8dB
500π	250	9/4	3.5dB

New concept: the 150Hz component is 4.5dB "louder" (higher level) than the 250Hz component.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Phasors Review	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones"
		00000	

Energy Spectrum

The lab will use "energy spectrum," which is just the time integral of power (Joules = Watts \times seconds). Energy only makes sense if you choose a total length of time, for example, if $T_0 = 0.02$ you could use

$$E_z = T_0 \times P_x = \int_0^{0.02} \left(7 + 5\cos(300\pi t) + 3\sin(500\pi t)\right)^2 dt = 66$$

Ω (radians/sec)	F (Hz)	Power	Energy
-500π	-250	9/4	0.02 imes 9/4
-300π	-150	25/4	0.02 imes 25/4
0	0	49	0.02 imes 49
300π	150	25/4	0.02 imes 25/4
500π	250	9/4	0.02 imes 9/4

$$E_z = 0.02 \times \left(\frac{9 + 25 + 25 + 9}{4} + 49\right) = 0.02 \times 66$$

Phasors Review 0	Complex Spectrum	Power Spectrum and Energy Spectrum	Amplitude Modulation and "Beat Tones"
Outline			

- 2 Complex Spectrum
- 3 Power Spectrum and Energy Spectrum
- 4 Amplitude Modulation and "Beat Tones"

Suppose we take some "carrier wave" $x(t) = \cos(2000\pi t)$, and multiply it by a "modulating signal" $y(t) = \sin(100\pi t)$.

$$z(t)=x(t)y(t)$$

 Phasors Review
 Complex Spectrum
 Power Spectrum and Energy Spectrum
 Amplitude Modulation and "Beat Tones"

 Amplitude Modulation
 Amplitude Modulation
 Amplitude Modulation and "Beat Tones"

In general,

$$z(t) = \cos{(\Omega_1 t - heta_1)}\cos{(\Omega_2 t - heta_2)}$$

is the same as

$$z(t) = rac{1}{2} \cos \left((\Omega_1 + \Omega_2)t - (heta_1 + heta_2)
ight) + rac{1}{2} \cos \left((\Omega_1 - \Omega_2)t - (heta_1 - heta_2)
ight)$$

In fact, if you add together two pure tones very close together in frequency:

$$z(t) = \cos \Omega_1 t + \cos \Omega_2 t$$

People will hear it as an amplitude modulated tone:

$$z(t) = \cos(rac{(\Omega_1 - \Omega_2)}{2}t)\cos(rac{(\Omega_1 + \Omega_2)}{2}t)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: tuning a guitar string.