Lecture 3: Spectrum

ECE 401: Signal and Image Analysis

University of Illinois

1/26/2017

(1) Phasors Review
(2) Complex Spectrum
(3) Power Spectrum and Energy Spectrum

4 Amplitude Modulation and "Beat Tones"

Outline

(1) Phasors Review

(2) Complex Spectrum

(3) Power Spectrum and Energy Spectrum

4 Amplitude Modulation and "Beat Tones"

On-Board Practice

Can I have 3 volunteers to come try this one on the board? Thanks!

$$
z[n]=\cos \left(0.26 \pi n-\frac{\pi}{3}\right)+\sin \left(0.26 \pi n-\frac{\pi}{6}\right)
$$

Find the phasors x and y, add them to find the phasor z, then convert it back to $z[n]$.
Hint: this one is easiest if you remember that the phasor of $\cos (\omega n)$ is $x=1$, whereas the phasor of $\sin (\omega n)$ is $-j$.

Outline

(1) Phasors Review
(2) Complex Spectrum
(3) Power Spectrum and Energy Spectrum
(4) Amplitude Modulation and "Beat Tones"

Spectrum: Sum of Sinusoids

How do we represent the information in a signal like

$$
z(t)=5 \cos (300 \pi t)+3 \sin (500 \pi t)
$$

(1) Complex spectrum (in linear units)
(2) Power spectrum (Watts, or dB)
(3) Energy spectrum (Joules, or dB)

Complex Spectrum

Complex spectrum is based on inverting Euler's identity:

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

therefore

$$
\begin{aligned}
& \cos (\omega t)=\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right) \\
& \sin (\omega t)=\frac{1}{2 j}\left(e^{j \omega t}-e^{-j \omega t}\right)
\end{aligned}
$$

Complex Spectrum

For example
$5 \cos (300 \pi t)+3 \sin (500 \pi t)=\frac{5}{2} e^{j 300 \pi t}+\frac{5}{2} e^{-j 300 \pi t}+\frac{3}{2 j} e^{j 500 \pi t}-\frac{3}{2 j} e^{-j 500 \pi}$
therefore

Ω (radians $/ \mathrm{sec}$)	$F(\mathrm{~Hz})$	$X(\Omega)$
-500π	-250	$-\frac{3}{2 j}=1.5 j$
-300π	-150	$\frac{5}{2}=2.5$
300π	150	$\frac{5}{2}=2.5$
500π	250	$\frac{3}{2 j}=-1.5 j$

New concept: spectrum has content at negative frequencies.
This is just a way of talking about sines vs. cosines, because $\sin (-x)=-\sin x$ but $\cos (-x)=\cos (x)$.

The "DC Term"

For example
$7+5 \cos (300 \pi t)+3 \sin (500 \pi t)=7 e^{j 0}+\frac{5}{2} e^{j 300 \pi t}+\frac{5}{2} e^{-j 300 \pi t}+\frac{3}{2 j} e^{j 500 \pi t}-\frac{3}{2}$
therefore

$\Omega($ radians $/ \mathrm{sec})$	$F(\mathrm{~Hz})$	$X(\Omega)$ (Complex Spectrum)
-500π	-250	$-\frac{3}{2 j}=1.5 j$
-300π	-150	$\frac{5}{2}=2.5$
0	0	7
300π	150	$\frac{5}{2}=2.5$
500π	250	$\frac{3}{2 j}=-1.5 j$

New concept: adding a constant is like adding a cosine at frequency $\Omega=0$.

Outline

(1) Phasors Review

(2) Complex Spectrum
(3) Power Spectrum and Energy Spectrum

4 Amplitude Modulation and "Beat Tones"

Power Spectrum

The power of any wave (sound, voltage, etc) is always proportional to the square of the wave. Acoustic wave:
Watts $=$ Pascals ${ }^{2} /$ acoustic_ohms. Electric wave:
Watts $=$ Volts ${ }^{2} /$ Ohms. And so on.
Ignore the constant, and focus on the square.

$$
\begin{gathered}
z(t)=A \cos (2 \pi F t-\theta) \\
P_{z}=\text { Average }\left(A^{2} \cos ^{2}(2 \pi F t-\theta)\right) \\
=\text { Average }\left(A^{2}\left(\frac{1}{2}+\frac{1}{2} \cos (4 \pi F t-2 \theta)\right)\right) \\
=\frac{A^{2}}{2}
\end{gathered}
$$

New concept: power of any sinusoid is independent of its phase.

Power Spectrum

The power of the sinusoid $\left(A^{2} / 2\right)$ gets divided between the positive-frequency half $\left(A^{2} / 4\right)$ and negative-frequency half $\left(A^{2} / 4\right)$, thus

$$
z(t)=7+5 \cos (300 \pi t)+3 \sin (500 \pi t)
$$

has the following power spectrum:

$\Omega($ radians $/ \mathrm{sec})$	$F(\mathrm{~Hz})$	$\|X(\Omega)\|^{2}($ Power Spectrum $)$
-500π	-250	$9 / 4$
-300π	-150	$25 / 4$
0	0	49
300π	150	$25 / 4$
500π	250	$9 / 4$

Parseval's Theorem

If $z(t)$ is periodic with any period T_{0}, then the average power can be computed in the time domain by averaging the square of the signal:

$$
P_{z}=\frac{1}{0.02} \int_{0}^{0.02}(7+5 \cos (300 \pi t)+3 \sin (500 \pi t))^{2} d t=66
$$

Or in the frequency domain by adding up the terms:

Ω (radians $/ \mathrm{sec})$	$F(\mathrm{~Hz})$	$\|X(\Omega)\|^{2}($ Power Spectrum)
-500π	-250	$9 / 4$
-300π	-150	$25 / 4$
0	0	49
300π	150	$25 / 4$
500π	250	$9 / 4$

$$
P_{z}=\frac{9+25+25+9}{4}+49=66
$$

Parseval's Theorem: Power is same in time domain or in frequency domain.

Decibels

Humans hear loudness roughly in proportion to the logarithm of power. The Level of a signal is $10 \log _{10}|X(\Omega)|^{2}$:

$\Omega($ radians $/ \mathrm{sec})$	$F(\mathrm{~Hz})$	$\|X(\Omega)\|^{2}$	$10 \log _{10}\|X(\Omega)\|^{2}(\mathrm{~dB})$
-500π	-250	$9 / 4$	3.5 dB
-300π	-150	$25 / 4$	8 dB
0	0	49	17 dB
300π	150	$25 / 4$	8 dB
500π	250	$9 / 4$	3.5 dB

New concept: the 150 Hz component is 4.5 dB "louder" (higher level) than the 250 Hz component.

Energy Spectrum

The lab will use "energy spectrum," which is just the time integral of power (Joules $=$ Watts \times seconds). Energy only makes sense if you choose a total length of time, for example, if $T_{0}=0.02$ you could use

$$
E_{z}=T_{0} \times P_{x}=\int_{0}^{0.02}(7+5 \cos (300 \pi t)+3 \sin (500 \pi t))^{2} d t=66
$$

Ω (radians/sec)	$F(\mathrm{~Hz})$	Power	Energy
-500π	-250	$9 / 4$	$0.02 \times 9 / 4$
-300π	-150	$25 / 4$	$0.02 \times 25 / 4$
0	0	49	0.02×49
300π	150	$25 / 4$	$0.02 \times 25 / 4$
500π	250	$9 / 4$	$0.02 \times 9 / 4$

$$
E_{z}=0.02 \times\left(\frac{9+25+25+9}{4}+49\right)=0.02 \times 66
$$

Outline

(1) Phasors Review

(2) Complex Spectrum
(3) Power Spectrum and Energy Spectrum

4 Amplitude Modulation and "Beat Tones"

Amplitude Modulation

Suppose we take some "carrier wave" $x(t)=\cos (2000 \pi t)$, and multiply it by a "modulating signal" $y(t)=\sin (100 \pi t)$.

$$
\begin{gathered}
z(t)=x(t) y(t) \\
=\left(\frac{e^{j 2000 \pi t}+e^{-j 2000 \pi t}}{2}\right)\left(\frac{e^{j 100 \pi t}-e^{-j 100 \pi t}}{2 j}\right) \\
=\frac{1}{4 j} e^{j 2100 \pi t}-\frac{1}{4 j} e^{j 1900 \pi t}+\frac{1}{4 j} e^{-j 1900 \pi t}-\frac{1}{4 j} e^{-j 2100 \pi t} \\
=\frac{1}{2} \sin (2100 \pi t)+\frac{1}{2} \sin (1900 \pi t)
\end{gathered}
$$

Amplitude Modulation

In general,

$$
z(t)=\cos \left(\Omega_{1} t-\theta_{1}\right) \cos \left(\Omega_{2} t-\theta_{2}\right)
$$

is the same as

$$
z(t)=\frac{1}{2} \cos \left(\left(\Omega_{1}+\Omega_{2}\right) t-\left(\theta_{1}+\theta_{2}\right)\right)+\frac{1}{2} \cos \left(\left(\Omega_{1}-\Omega_{2}\right) t-\left(\theta_{1}-\theta_{2}\right)\right)
$$

Beat Tones

In fact, if you add together two pure tones very close together in frequency:

$$
z(t)=\cos \Omega_{1} t+\cos \Omega_{2} t
$$

People will hear it as an amplitude modulated tone:

$$
z(t)=\cos \left(\frac{\left(\Omega_{1}-\Omega_{2}\right)}{2} t\right) \cos \left(\frac{\left(\Omega_{1}+\Omega_{2}\right)}{2} t\right)
$$

Example: tuning a guitar string.

