Lecture 2: Phasors

ECE 401: Signal and Image Analysis

University of Illinois

$$
1 / 24 / 2017
$$

(1) Adding Cosines
(2) Complex Numbers
(3) Phasors

Outline

(1) Adding Cosines

(2) Complex Numbers

(3) Phasors

Sum of Cosines is a Cosine

$$
A \cos (\omega n-\alpha)+B \sin (\omega n-\beta)=C \cos (\omega n-\gamma)
$$

- When you add cosines at the same frequency (ω), the result is another cosine at that frequency.
- (sine is a type of cosine: $\left.\sin (\omega n)=\cos \left(\omega n-\frac{\pi}{2}\right)\right)$

What is C? What is Gamma?

$$
A \cos (\omega n-\alpha)+B \sin (\omega n-\beta)=C \cos (\omega n-\gamma)
$$

- You might know that you can find C and γ using trig identities, like $\cos a \cos b=\frac{1}{2} \cos (a+b)+\frac{1}{2} \cos (a-b)$. The problem with this method: no pictures.
- Goal of today's lecture: teach you a method that solves this problem using pictures.

Outline

(1) Adding Cosines

(2) Complex Numbers

Complex Number $=$ Funny 2D Vector

A "complex number" is just a 2D vector with a funny multiplication rule.

$$
\begin{gathered}
x=\left(x_{r}, x_{i}\right), \quad y=\left(y_{r}, y_{i}\right) \\
x+y=\left(x_{r}+y_{r}, x_{i}+y_{i}\right) \\
x y=\left(x_{r} y_{r}-x_{i} y_{i}, x_{r} y_{i}+x_{i} y_{r}\right)
\end{gathered}
$$

$j=$ Square Root of -1

The "funny multiplication rule" happens to make sense if we pretend that $j=\sqrt{-1}$:

$$
\begin{gathered}
x=x_{r}+j x_{i}, \quad y=y_{r}+j y_{i} \\
x+y=\left(x_{r}+y_{r}\right)+j\left(x_{i}+y_{i}\right) \\
x y=x_{r} y_{r}+j x_{r} y_{i}+j x_{i} y_{r}+j^{2} x_{i} y_{i} \\
=\left(x_{r} y_{r}-x_{i} y_{i}\right)+j\left(x_{r} y_{i}+x_{i} y_{r}\right)
\end{gathered}
$$

Magnitude and Phase

The "funny multiplication rule" is actually much easier to write in terms of magnitude and phase:

$$
\begin{gathered}
x=M_{X} e^{j \theta_{x}}, \quad y=M_{y} e^{j \theta_{y}}, \quad z=M_{z} e^{j \theta_{x}} \\
z=x y=M_{x} e^{j \theta_{x}} M_{y} e^{j \theta_{y}} \\
M_{z}=M_{x} M_{y}, \quad \theta_{z}=\theta_{x}+\theta_{y}
\end{gathered}
$$

Euler's Identity

The "funny multiplication rule" results in Euler's identity:

$$
\begin{gathered}
e^{j \theta}=\cos \theta+j \sin \theta \\
M_{x} e^{j \theta_{x}}=M_{x} \cos \theta_{x}+j M_{x} \sin \theta_{x} \\
x_{r}=M_{x} \cos \theta_{x}, \quad x_{i}=M_{x} \sin \theta_{x}
\end{gathered}
$$

Quarter-Circles (Quadrature)

$$
\begin{gathered}
1=\cos 0+j \sin 0=e^{j 0} \\
j=\cos \left(\frac{\pi}{2}\right)+j \sin \left(\frac{\pi}{2}\right)=e^{j \pi / 2} \\
(-1)=\cos (\pi)+j \sin (\pi)=e^{j \pi} \\
-j=\cos \left(-\frac{\pi}{2}\right)+j \sin \left(-\frac{\pi}{2}\right)=e^{-j \pi / 2}
\end{gathered}
$$

\ldots.. we can add 2π to any of the above angles, and get the same result.

Magnitude and Phase

Conversely, to get back the magnitude and phase, we use

$$
M_{x}=\sqrt{x_{r}^{2}+x_{i}^{2}}=\sqrt{|x|^{2}}=\sqrt{x x^{*}}
$$

\ldots where x^{*} is a special number we made up just for this purpose, called " x conjugate:"

$$
x^{*}=x_{r}-j x_{i}
$$

The angle can be defined to be $-\pi<\theta \leq \pi$, if we're careful about x_{r}.

$$
\begin{gathered}
\frac{x_{i}}{x_{r}}=\frac{\sin \theta_{x}}{\cos \theta_{x}}=\tan \theta_{x}=\tan \left(\theta_{x} \pm \pi\right)=\frac{\sin \left(\theta_{x} \pm \pi\right)}{\cos \left(\theta_{x} \pm \pi\right)}=\frac{-x_{i}}{-x_{r}} \\
\theta_{x}= \begin{cases}\operatorname{atan}\left(\frac{x_{i}}{x_{r}}\right) & x_{r}>0 \\
\operatorname{atan}\left(\frac{x_{i}}{x_{r}}\right) \pm \pi & x_{r}<0\end{cases}
\end{gathered}
$$

Outline

(1) Adding Cosines

(2) Complex Numbers
(3) Phasors

Euler's Identity

Phasors start with Euler's identity:

$$
e^{j \omega n}=\cos (\omega n)+j \sin (\omega n)
$$

And then we turn it around:

$$
\cos (\omega n)=\Re\left\{e^{j \omega n}\right\}
$$

In the equation above, \Re means "real part of"

Phasor

Pretend every cosine, and every sine, is the projection, into the real world, of a complex number called a PHASOR, times $e^{j \omega n}$

$$
\begin{array}{cc}
A \cos (\omega n-\alpha)=\Re\left\{A e^{-j \alpha} e^{j \omega n}\right\}, & \mathrm{PHASOR}=A e^{-j \alpha} \\
B \sin (\omega n-\beta)=\Re\left\{-j B e^{-j \beta} e^{j \omega n}\right\} & \mathrm{PHASOR}=-j B e^{-j \beta}
\end{array}
$$

Phasor Trick

Here's the trick that makes this method worthwhile:

$$
\begin{aligned}
& A \cos (\omega n-\alpha)+B \sin (\omega n-\beta) \\
= & \Re\left\{A e^{-j \alpha} e^{j \omega n}\right\}+\Re\left\{-j B e^{-j \beta} e^{j \omega n}\right\} \\
= & \Re\left\{A e^{-j \alpha} e^{j \omega n}-j B e^{-j \beta} e^{j \omega n}\right\} \\
= & \Re\left\{\left(A e^{-j \alpha}-j B e^{-j \beta}\right) e^{j \omega n}\right\}
\end{aligned}
$$

....and...

$$
C \cos (\omega n-\gamma)=\Re\left\{C e^{-j \gamma} e^{j \omega n}\right\}
$$

...so. . .

$$
C \cos (\omega n-\gamma)=A \cos (\omega n-\alpha)+B \sin (\omega n-\beta)
$$

...can be solved more easily by solving. . .

$$
C e^{-j \gamma}=A e^{-j \alpha}-j B e^{-j \beta}
$$

- Two different methods of solving. Actually, both require about the same amount of algebra, but. . .
- The bottom equation can be solved using a picture. The picture actually helps, a lot, in checking your solution.

Phasor Method w/o the Picture

It's much better to do this with the picture. But without the picture, here's how it's done:

$$
\begin{gathered}
C e^{-j \gamma}=A e^{-j \alpha}-j B e^{-j \beta} \\
=A \cos (-\alpha)+j A \sin (-\alpha)-j(B \cos (-\beta)+j B \sin (-\beta)) \\
=\left(A \cos (-\alpha)-j^{2} B \sin (-\beta)\right)+j(A \sin (-\alpha)-B \cos (-\beta)) \\
=(A \cos (\alpha)-B \sin (\beta))-j(A \sin (\alpha)+B \cos (\beta)) \\
C=\sqrt{(A \cos (\alpha)-B \sin (\beta))^{2}+(A \sin (\alpha)+B \cos (\beta))^{2}} \\
\gamma=-\operatorname{atan} \frac{-(A \sin (\alpha)+B \cos (\beta))}{(A \cos (\alpha)-B \sin (\beta))}
\end{gathered}
$$

Example

$$
z(t)=\cos \left(2 \pi 0.01 n-\frac{\pi}{4}\right)+\sin \left(2 \pi 0.01 n-\frac{\pi}{4}\right)
$$

On-Board Practice

Can I have 3 volunteers to come try this one on the board? Thanks!

$$
z(t)=\cos \left(0.26 \pi n-\frac{\pi}{3}\right)+\sin \left(0.26 \pi n-\frac{\pi}{6}\right)
$$

