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Sum of Cosines is a Cosine

A cos (ωn − α) + B sin (ωn − β) = C cos (ωn − γ)

When you add cosines at the same frequency (ω), the result is
another cosine at that frequency.

(sine is a type of cosine: sin(ωn) = cos(ωn − π
2 ))
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What is C? What is Gamma?

A cos (ωn − α) + B sin (ωn − β) = C cos (ωn − γ)

You might know that you can find C and γ using trig
identities, like cos a cos b = 1

2 cos(a + b) + 1
2 cos(a− b). The

problem with this method: no pictures.

Goal of today’s lecture: teach you a method that solves this
problem using pictures.
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Complex Number = Funny 2D Vector

A “complex number” is just a 2D vector with a funny
multiplication rule.

x = (xr , xi ), y = (yr , yi )

x + y = (xr + yr , xi + yi )

xy = (xryr − xiyi , xryi + xiyr )
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j = Square Root of -1

The “funny multiplication rule” happens to make sense if we
pretend that j =

√
−1:

x = xr + jxi , y = yr + jyi

x + y = (xr + yr ) + j(xi + yi )

xy = xryr + jxryi + jxiyr + j2xiyi

= (xryr − xiyi ) + j (xryi + xiyr )
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Magnitude and Phase

The “funny multiplication rule” is actually much easier to write in
terms of magnitude and phase:

x = MX e
jθx , y = Mye

jθy , z = Mze
jθx

z = xy = MX e
jθxMye

jθy

Mz = MxMy , θz = θx + θy
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Euler’s Identity

The “funny multiplication rule” results in Euler’s identity:

e jθ = cos θ + j sin θ

Mxe
jθx = Mx cos θx + jMx sin θx

xr = Mx cos θx , xi = Mx sin θx
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Quarter-Circles (Quadrature)

1 = cos 0 + j sin 0 = e j0

j = cos
(π

2

)
+ j sin

(π
2

)
= e jπ/2

(−1) = cos (π) + j sin (π) = e jπ

−j = cos
(
−π

2

)
+ j sin

(
−π

2

)
= e−jπ/2

. . . we can add 2π to any of the above angles, and get the same
result.
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Magnitude and Phase

Conversely, to get back the magnitude and phase, we use

Mx =
√

x2r + x2i =
√
|x |2 =

√
xx∗

. . . where x∗ is a special number we made up just for this purpose,
called “x conjugate:”

x∗ = xr − jxi

The angle can be defined to be −π < θ ≤ π, if we’re careful about
xr .

xi
xr

=
sin θx
cos θx

= tan θx = tan (θx ± π) =
sin (θx ± π)

cos (θx ± π)
=
−xi
−xr

θx =

 atan
(

xi
xr

)
xr > 0

atan
(

xi
xr

)
± π xr < 0
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Euler’s Identity

Phasors start with Euler’s identity:

e jωn = cos(ωn) + j sin(ωn)

And then we turn it around:

cos(ωn) = <
{
e jωn

}
In the equation above, < means “real part of”
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Phasor

Pretend every cosine, and every sine, is the projection, into the real
world, of a complex number called a PHASOR, times e jωn

A cos (ωn − α) = <
{
Ae−jαe jωn

}
, PHASOR = Ae−jα

B sin (ωn − β) = <
{
−jBe−jβe jωn

}
PHASOR = −jBe−jβ
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Phasor Trick

Here’s the trick that makes this method worthwhile:

A cos (ωn − α) + B sin (ωn − β)

= <
{
Ae−jαe jωn

}
+ <

{
−jBe−jβe jωn

}
= <

{
Ae−jαe jωn − jBe−jβe jωn

}
= <

{(
Ae−jα − jBe−jβ

)
e jωn

}
. . . and. . .

C cos (ωn − γ) = <
{
Ce−jγe jωn

}
. . . so. . .
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Phasor Trick

C cos (ωn − γ) = A cos (ωn − α) + B sin (ωn − β)

. . . can be solved more easily by solving. . .

Ce−jγ = Ae−jα − jBe−jβ

Two different methods of solving. Actually, both require
about the same amount of algebra, but. . .

The bottom equation can be solved using a picture. The
picture actually helps, a lot, in checking your solution.
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Phasor Method w/o the Picture

It’s much better to do this with the picture. But without the
picture, here’s how it’s done:

Ce−jγ = Ae−jα − jBe−jβ

= A cos(−α) + jA sin(−α)− j (B cos(−β) + jB sin(−β))

=
(
A cos(−α)− j2B sin(−β)

)
+ j (A sin(−α)− B cos(−β))

= (A cos(α)− B sin(β))− j (A sin(α) + B cos(β))

C =

√
(A cos(α)− B sin(β))2 + (A sin(α) + B cos(β))2

γ = −atan
− (A sin(α) + B cos(β))

(A cos(α)− B sin(β))
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Example

z(t) = cos
(

2π0.01n − π

4

)
+ sin

(
2π0.01n − π

4

)
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On-Board Practice

Can I have 3 volunteers to come try this one on the board?
Thanks!

z(t) = cos
(

0.26πn − π

3

)
+ sin

(
0.26πn − π

6

)
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