			e	r	
00	0				

Filter Design Methods 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lecture 17: IIR Filters

ECE 401: Signal and Image Analysis

University of Illinois

4/13/2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 Impulse Response of an IIR Filter

3 Implementation: Direct, Serial

Filter Design Methods 0

Outline

2 Impulse Response of an IIR Filter

Implementation: Direct, Serial

IIR Filters ●00	Impulse Response of an IIR Filter	Implementation: Direct, Serial	Filter Design Methods 0
IIR Filter	S		

$$H(z) = \frac{\prod_{m=1}^{M} (1 - r_m/z)}{\prod_{m=1}^{N} (1 - p_m/z)} = \frac{1 + \sum_{m=1}^{M} b_m z^{-m}}{1 - \sum_{m=1}^{N} a_m z^{-m}}$$

• The IIR filter is **designed** by choosing the poles and zeros.

- The zeros are *M* different frequencies $z = r_m = e^{-\beta_m + j\phi_m}$ at which H(z) = 0.
- The poles are N different frequencies $z = p_m = e^{-\alpha_m + j\theta_m}$ at which $H(z) = \infty$.
- The center frequency of a pole (zero), in radians/sample, is $\theta_m = \angle p_m \ (\phi_m = \angle r_m).$

- The **bandwidth** of a pole (zero), in radians/sample, is $\alpha_m = \ln |p_m| \ (\beta_m = \ln |r_m|).$
- The IIR filter is **implemented** using an LCCDE with coefficients a_m and b_m .

Filters	Impulse	Response		Filter
0				

IIF

Implementation: Direct, Serial 0000000

Filter Design Methods 0

Frequency Response of an IIR Filter

$$H(e^{j\omega}) = \frac{\prod_{m=1}^{M} (1 - r_m e^{-j\omega})}{\prod_{m=1}^{N} (1 - p_m e^{-j\omega})} = \frac{\sum_{m=0}^{M} b_m e^{-j\omega m}}{1 - \sum_{m=1}^{N} a_m e^{-j\omega m}}$$

- The magnitude spectrum $|H(\omega)|$, phase spectrum $\angle H(\omega)$, and level spectrum $20 \log_{10} |H(\omega)|$ can be calculated in python by just finding the magnitude, phase, and log-magnitude of $H(\omega)$ for different values of ω .
- Usually it's not easy to find $|H(\omega)|$ by hand, except at two or three Very Important Frequencies (the VIFs).

 IIR Filters
 Impulse Response of an IIR Filter

 000
 00000000

Filter Design Methods 0

Frequency Response of an IIR Filter

$$H(e^{j\omega}) = \frac{\prod_{m=1}^{M} (1 - r_m e^{-j\omega})}{\prod_{m=1}^{N} (1 - p_m e^{-j\omega})} = \frac{\sum_{m=0}^{M} b_m e^{-j\omega m}}{1 - \sum_{m=1}^{N} a_m e^{-j\omega m}}$$

• Usually it's not easy to find $|H(\omega)|$ by hand, except at two or three Very Important Frequencies (the VIFs).

- H(e^{j0}) is easy to calculate, because e^{j0} = 1. So you just plug in z = 1 to every z in the formula for H(z).
- *H*(e^{jπ}) is easy to calculate, because e^{jπ} = −1. So you just plug in z = −1 for every z in *H*(z).
- If you know $H(e^{j0})$ and $H(e^{j\pi})$, you can tell whether it's approximately a LPF or HPF. If you want to know if it's a BPF, you need a few more frequencies.
- At the zero-frequency, $\phi_m = \angle r_m$, there will always be a dip. How much of a dip? It depends on the bandwidth, $\beta_m = \ln |r_m|$.
- At the pole-frequency, $\theta_m = \angle p_m$, there will always be a peak. How much of a peak? It depends on the bandwidth, $\alpha_m = \ln |p_m|$.

Filter Design Methods 0

Outline

2 Impulse Response of an IIR Filter

Implementation: Direct, Serial

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへぐ

Filters	

Impulse Response of an IIR Filter ••••••• Implementation: Direct, Serial

Filter Design Methods 0

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Impulse Response of a One-Pole Filter

Consider a one-pole IIR Filter:

$$H(z) = \frac{C}{1 - p_m z^{-1}}$$

We already know this one. The impulse response is

$$h[n] = C(p_m)^n u[n]$$

IIR Filters	Impulse Response of an IIR Filter	Implementation: Direct, Serial	Filter Design Methods
000	0000000		0
Partial F	raction Expansion		

Consider a more complicated IIR filter:

$$H(z) = \frac{\prod_{m=1}^{M} (1 - r_m/z)}{\prod_{m=1}^{N} (1 - p_m/z)}$$

The partial fraction expansion theorem (PFE) says that, if $M \le N$, then we can write

$$\frac{\prod_{m=1}^{M}(1-r_m/z)}{\prod_{m=1}^{N}(1-p_m/z)} = C_0 + \sum_{m=1}^{N} \frac{C_m}{1-p_m/z}$$

Where $C_0 = 1$ if M = N, otherwise $C_0 = 0$.

IR Filters	Impulse Response of an IIR Filter	Implem
	000000	

Filter Design Methods 0

Proof of the PFE Theorem

Let's prove this:

$$\frac{\prod_{m=1}^{M}(1-r_m/z)}{\prod_{m=1}^{N}(1-p_m/z)} = C_0 + \sum_{m=1}^{N} \frac{C_m}{1-p_m/z}$$

Multiply both sides of the equation by $\prod_{m=1}^{N} (1 - p_m/z)$. That gives:

$$\prod_{m=1}^{M} (1 - r_m/z) = C_0 \prod_{m=1}^{N} (1 - p_m/z) + C_1 \prod_{m=2}^{N} (1 - p_m/z) + \dots$$

- Since the coefficients C_1, \ldots, C_N are completely up to us, we can choose them so that the LHS equals the RHS.
- The LHS is a polynomial of order *M*. All of the terms on the RHS are polynomials of order *N* 1 except the C₀ term, which has order *N*. Therefore, we only need the C₀ term if *M* = *N*; if *M* < *N*, we can set C₀ = 0.

IIR Filters 000	Impulse Response of an IIR Filter	Implementation: Direct, Serial	Filter Design Methods 0
T 11			

Finding the Coefficients

To find the k^{th} coefficient, C_k , we start with this equation:

$$\frac{\prod_{m=1}^{M}(1-r_m/z)}{\prod_{m=1}^{N}(1-p_m/z)} = C_0 + \sum_{m=1}^{N} \frac{C_m}{1-p_m/z}$$

Multiply both sides by $(1 - p_k/z)$. That gives:

$$\frac{\prod_{m=1}^{M}(1-r_m/z)}{\prod_{m\neq k}(1-p_m/z)} = C_0(1-p_k/z) + C_k + \sum_{m\neq k} C_m \frac{1-p_k/z}{1-p_m/z}$$

Then if we evaluate at $z = p_k$, all terms on the RHS disappear except the C_k term:

$$\frac{\prod_{m=1}^{M}(1-r_m/z)}{\prod_{m\neq k}(1-p_m/z)}\bigg|_{z=p_k}=C_k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

IIR Filters	Impulse Response of an IIR	Filte
	00000000	

Filter Design Methods 0

Partial Fraction Expansion Example

Suppose

$$H(z) = \frac{(1 - (0.9)e^{-j2\pi/3}/z)(1 - (0.9)e^{j2\pi/3}/z)}{(1 - (0.9)e^{-j\pi/3}/z)(1 - (0.9)e^{j\pi/3}/z)}$$

The PFE theorem tells us that

$$H(z) = 1 + \frac{C_1}{1 - (0.9)e^{-j\pi/3}/z} + \frac{C_1}{1 - (0.9)e^{j\pi/3}/z}$$

where

$$C_1 = \left. rac{(1-(0.9)e^{-j2\pi/3}/z)(1-(0.9)e^{j2\pi/3}/z)}{(1-0.9e^{j\pi/3})/z}
ight|_{z=0.9e^{-j\pi/3}}$$

$$C_1 = \frac{(1+j)(1+1)}{(1-j)} = 2j$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

IIR Filters 000	R FiltersImpulse Response of an IIR Filter0000000000			In O	nplementation: Direct, S 000000	Serial	Filter Design Methods 0	
D			_		_			

Partial Fraction Expansion Example

$$H(z) = \frac{(1 - (0.9)e^{-j2\pi/3}/z)(1 - (0.9)e^{j2\pi/3}/z)}{(1 - (0.9)e^{-j\pi/3}/z)(1 - (0.9)e^{j\pi/3}/z)}$$

$$C_2 = \frac{(1 - 0.9e^{-j2\pi/3}/z)(1 - 0.9e^{j2\pi/3}/z)}{(1 - 0.9e^{-j\pi/3})/z} \bigg|_{z=0.9e^{j\pi/3}}$$

$$C_2 = \frac{(1 + 1)(1 - j)}{(1 + j)} = -2j$$

So

$$H(z) = 1 + \frac{2j}{1 - 0.9e^{-j\pi/3}/z} - \frac{2j}{1 - 0.9e^{j\pi/3}/z}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

IIR Filters	Impulse Response	of an	IIR	Filter
	00000000			

Filter Design Methods 0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Impulse Response Example

Suppose

$$H(z) = \frac{(1 - 0.9e^{-j2\pi/3}/z)(1 - 0.9e^{j2\pi/3}/z)}{(1 - 0.9e^{-j\pi/3}/z)(1 - 0.9e^{j\pi/3}/z)}$$
$$H(z) = 1 + \frac{2j}{1 - 0.9e^{-j\pi/3}/z} - \frac{2j}{1 - 0.9e^{j\pi/3}/z}$$

So

$$h[n] = \delta[n] + 2j(0.9)^n e^{-j\pi n/3} u[n] - 2j(0.9)^n e^{j\pi n/3} u[n]$$

Combining the $p_1=0.9e^{-j\pi/3}$ and $p_2=0.9e^{j\pi/3}$ terms, we get

$$h[n] = \delta[n] - (0.9)^n \sin\left(\frac{\pi n}{3}\right) u[n]$$

IR Filters	Impulse Response of an IIR	Filter
000	0000000	

Filter Design Methods 0

Impulse Response of an IIR Filter

Consider a more complicated IIR filter:

$$H(z) = \frac{\prod_{m=1}^{M} (1 - r_m/z)}{\prod_{m=1}^{N} (1 - p_m/z)} = C_0 + \sum_{m=1}^{N} \frac{C_m}{1 - p_m/z}$$

The impulse response is

$$h[n] = C_0 \delta[n] + \sum_{m=1}^{N} C_m (p_m)^n u[n]$$

Notice that h[n] is real if and only if the poles come in complex-conjugate pairs. Let's assume that this is the case, therefore we have only two possibilities for each pole:

- p_m might be real-valued, in which case C_m is also real-valued, or
- p_m and p_{m+1} might be a complex conjugage pair, $p_{m+1} = p_m^*$, meaning that $|p_{m+1}| = |p_m|$, and $\angle p_{m+1} = -\angle p_m$. In this case, it will always turn out that $C_{m+1} = C_m^*$, where $p_m = p_m^*$.

mpulse Response of an IIR Filter

Implementation: Direct, Serial

Filter Design Methods 0

Outline

Impulse Response of an IIR Filter

3 Implementation: Direct, Serial

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | 釣��

IIR Filters 000	Impulse Respon	ise of an IIR Filter	Implementation: Direct, Serial	Filter Design Methods 0
Implemer	ntation:	Direct Form		

Given r_m and p_m , we need to find the LCCDE coefficients a_m and b_m . We do this by multiplying out the polynomials:

$$\prod_{m=1}^{M} (1 - r_m z^{-1}) = 1 + \sum_{m=1}^{M} b_m z^{-m}$$
$$\prod_{m=1}^{N} (1 - p_m z^{-1}) = 1 - \sum_{m=1}^{N} a_m z^{-m}$$

Then we implement it in direct form as

$$y[n] = x[n] + \sum_{m=1}^{M} b_m x[n-m] + \sum_{m=1}^{N} a_m y[n-m]$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

IIR Filters	Impulse Response of an IIR Filter	Implementation: Direct, Serial	Filter Design Methods
000		000000	0
Direct Fo	rm Example		

Let's use the same example:

$$(1 - 0.9e^{-j2\pi/3}z^{-1})(1 - 0.9e^{j2\pi/3}z^{-1})$$

= 1 - 2(0.9) cos $\left(\frac{2\pi}{3}\right)z^{-1}$ + (0.9)²z⁻²
= 1 + 0.9z^{-1} + 0.81z⁻²

$$(1 - 0.9e^{-j\pi/3}z^{-1})(1 - 0.9e^{j\pi/3}z^{-1})$$

= 1 - 2(0.9) cos $(\frac{\pi}{6})z^{-1}$ + (0.9)²z⁻²
= 1 - 0.9z^{-1} + 0.81z⁻²

So we implement it in direct form as

$$y[n] = x[n] + 0.9x[n-1] + 0.81x[n-2] + 0.9y[n-1] - 0.81y[n-2]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

IIR Filters 000	Impulse Response of an IIR Filter	Implementation: Direct, Serial	Filter Design Methods ⊙
Serial For	rm		

The problem with direct form is that, if N is very large, we have to multiply out a very long polynomial. The resulting floating-point roundoff error sometimes causes the implemented filter to be very different from the filter we want. The solution is to divide the filter into order-2 subfilters:

$$H(z) = H_1(z)H_2(z)\ldots H_{\frac{N}{2}}(z)$$

This corresponds to filtering the signal with one filter after another, like this:

$$V_{1}(z) = H_{1}(z)X(z)$$

$$V_{2}(z) = H_{2}(z)V_{1}(z)$$

$$\vdots \qquad \vdots$$

$$Y(z) = H_{\frac{N}{2}}(z)V_{\frac{N}{2}-1}(z)$$

IIR Filters	Impulse Response of an IIR Filter	Implementation: Direct, Serial	Filter Design Methods
		0000000	

The reason we choose to group the poles into groups of two is so that we can have real-valued filter coefficients.

$$H_k(z) = \frac{(1 - r_{2k}z^{-1})(1 - r_{2k+1}z^{-1})}{(1 - p_{2k}z^{-1})(1 - p_{2k+1}z^{-1})}$$

If $|r_{2k+1}| = |r_{2k}|$, $\angle r_{2k+1} = -\angle r_{2k}$, $|p_{2k+1}| = |p_{2k}|$, and $\angle p_{2k+1} = -\angle p_{2k}$, then

$$H_k(z) = \frac{1 - 2|r_{2k}|\cos(\angle r_{2k})z^{-1} + |r_{2k}|^2 z^{-2}}{1 - 2|p_{2k}|\cos(\angle p_{2k})z^{-1} + |p_{2k}|^2 z^{-2}}$$

(日) (日) (日) (日) (日) (日) (日) (日)

...so all the filter coefficients are real numbers.

IIR Filters 000	Impulse Response of an IIR Filter	Implementation: Direct, Serial	Filter Design Methods 0
Series Ex	ample		

Suppose we want to implement a 4th-order filter, with

- Zeros: $r_1 = 0.9e^{j2\pi/3}$, $r_2 = 0.9e^{-j2\pi/3}$, $r_3 = 0.9e^{j3\pi/4}$, $r_4 = 0.9e^{-j3\pi/4}$.
- Poles: $p_1 = 0.9e^{j\pi/3}$, $p_2 = 0.9e^{-j\pi/3}$, $p_3 = 0.9e^{j\pi/4}$, $p_4 = 0.9e^{-j\pi/4}$.

We can group them into two groups:

$$\begin{split} H_1(z) &= \frac{(1-0.9e^{j2\pi/3}z^{-1})(1-0.9e^{-j2\pi/3}z^{-1})}{(1-0.9e^{j\pi/3}z^{-1})(1-0.9e^{-j\pi/3}z^{-1})}\\ H_2(z) &= \frac{(1-0.9e^{j3\pi/4}z^{-1})(1-0.9e^{-j3\pi/4}z^{-1})}{(1-0.9e^{j\pi/4}z^{-1})(1-0.9e^{-j\pi/4}z^{-1})} \end{split}$$

IIR Filters	Impulse Response of an IIR Filter	Implementation: Direct, Serial	Filter Design Methods
000		00000●0	0
Series Example			

$$H_{1}(z) = \frac{(1 - 0.9e^{j2\pi/3}z^{-1})(1 - 0.9e^{-j2\pi/3}z^{-1})}{(1 - 0.9e^{j\pi/3}z^{-1})(1 - 0.9e^{-j\pi/3}z^{-1})}$$
$$H_{2}(z) = \frac{(1 - 0.9e^{j3\pi/4}z^{-1})(1 - 0.9e^{-j3\pi/4}z^{-1})}{(1 - 0.9e^{j\pi/4}z^{-1})(1 - 0.9e^{-j\pi/4}z^{-1})}$$

Multiplying them out, we get

$$\begin{split} H_1(z) &= \frac{1+0.9z^{-1}+0.81z^{-1}}{1-0.9z^{-1}+0.81z^{-1}}\\ H_2(z) &= \frac{1+0.9\sqrt{2}z^{-1}+0.81z^{-1}}{1-0.9\sqrt{2}z^{-1}+0.81z^{-1}} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

IIR Filters	Impulse Response of an IIR Filter	Implementation: Direct, Serial	Filter Design Methods
000		000000●	0
Series Ex	ample		

$$H_1(z) = \frac{1 + 0.9z^{-1} + 0.81z^{-1}}{1 - 0.9z^{-1} + 0.81z^{-1}}$$
$$H_2(z) = \frac{1 + 0.9\sqrt{2}z^{-1} + 0.81z^{-1}}{1 - 0.9\sqrt{2}z^{-1} + 0.81z^{-1}}$$

We can implement the series connection of these two filters as

$$v[n] = x[n] + 0.9x[n-1] + 0.81x[n-2] + 0.9v[n-1] - 0.81v[n-2]$$
$$y[n] = v[n] + 0.9\sqrt{2}v[n-1] + 0.81v[n-2] + 0.9\sqrt{2}y[n-1] - 0.81y[n-2]$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Filter Design Methods $_{\odot}$

Outline

Impulse Response of an IIR Filter

Implementation: Direct, Serial

IIR Filters 000

Impulse Response of an IIR Filter

Implementation: Direct, Serial

Filter Design Methods

Filter Design Methods

- Notch Filter: to cancel narrowband noise at frequency ω_c, you set the zeros to r₂ = r₁^{*} = e^{-jω_c}, and set the poles to p₂ = p₁^{*} = ae^{-jω_c}, for some real number a < 1.
- **LPC (Linear Predictive Coding):** We can model a resonant production mechanism, like human speech, musical instruments, ventilation ducts, and so on, by finding the resonant frequencies and bandwidths of the system, and by setting *p_m* to match.
- Analog Filter Design Methods: Low-pass, high-pass, and bandpass filters can be designed using old-fashioned filter design methods, then converted from analog to digital. There are programs that can do this for you. The three most common methods are Butterworth (no ripple, wide transition band; this is usually the one you want), Elliptical (smallest transition band, but lots of ripple), Chebyshev (intermediate between the others).