## Lecture 17: IIR Filters

## ECE 401: Signal and Image Analysis

University of Illinois

$$
4 / 13 / 2017
$$


(1) IIR Filters
(2) Impulse Response of an IIR Filter
(3) Implementation: Direct, Serial

4 Filter Design Methods

## Outline

(1) IIR Filters
(2) Impulse Response of an IIR Filter
(3) Implementation: Direct, Serial

4 Filter Design Methods

## IIR Filters

$$
H(z)=\frac{\prod_{m=1}^{M}\left(1-r_{m} / z\right)}{\prod_{m=1}^{N}\left(1-p_{m} / z\right)}=\frac{1+\sum_{m=1}^{M} b_{m} z^{-m}}{1-\sum_{m=1}^{N} a_{m} z^{-m}}
$$

- The IIR filter is designed by choosing the poles and zeros.
- The zeros are $M$ different frequencies $z=r_{m}=e^{-\beta_{m}+j \phi_{m}}$ at which $H(z)=0$.
- The poles are $N$ different frequencies $z=p_{m}=e^{-\alpha_{m}+j \theta_{m}}$ at which $H(z)=\infty$.
- The center frequency of a pole (zero), in radians/sample, is $\theta_{m}=\angle p_{m}\left(\phi_{m}=\angle r_{m}\right)$.
- The bandwidth of a pole (zero), in radians/sample, is $\alpha_{m}=\ln \left|p_{m}\right|\left(\beta_{m}=\ln \left|r_{m}\right|\right)$.
- The IIR filter is implemented using an LCCDE with coefficients $a_{m}$ and $b_{m}$.


## Frequency Response of an IIR Filter

$$
H\left(e^{j \omega}\right)=\frac{\prod_{m=1}^{M}\left(1-r_{m} e^{-j \omega}\right)}{\prod_{m=1}^{N}\left(1-p_{m} e^{-j \omega}\right)}=\frac{\sum_{m=0}^{M} b_{m} e^{-j \omega m}}{1-\sum_{m=1}^{N} a_{m} e^{-j \omega m}}
$$

- The magnitude spectrum $|H(\omega)|$, phase spectrum $\angle H(\omega)$, and level spectrum $20 \log _{10}|H(\omega)|$ can be calculated in python by just finding the magnitude, phase, and log-magnitude of $H(\omega)$ for different values of $\omega$.
- Usually it's not easy to find $|H(\omega)|$ by hand, except at two or three Very Important Frequencies (the VIFs).


## Frequency Response of an IIR Filter

$$
H\left(e^{j \omega}\right)=\frac{\prod_{m=1}^{M}\left(1-r_{m} e^{-j \omega}\right)}{\prod_{m=1}^{N}\left(1-p_{m} e^{-j \omega}\right)}=\frac{\sum_{m=0}^{M} b_{m} e^{-j \omega m}}{1-\sum_{m=1}^{N} a_{m} e^{-j \omega m}}
$$

- Usually it's not easy to find $|H(\omega)|$ by hand, except at two or three Very Important Frequencies (the VIFs).
- $H\left(e^{j 0}\right)$ is easy to calculate, because $e^{j 0}=1$. So you just plug in $z=1$ to every $z$ in the formula for $H(z)$.
- $H\left(e^{j \pi}\right)$ is easy to calculate, because $e^{j \pi}=-1$. So you just plug in $z=-1$ for every $z$ in $H(z)$.
- If you know $H\left(e^{j 0}\right)$ and $H\left(e^{j \pi}\right)$, you can tell whether it's approximately a LPF or HPF. If you want to know if it's a BPF, you need a few more frequencies.
- At the zero-frequency, $\phi_{m}=\angle r_{m}$, there will always be a dip. How much of a dip? It depends on the bandwidth, $\beta_{m}=\ln \left|r_{m}\right|$.
- At the pole-frequency, $\theta_{m}=\angle p_{m}$, there will always be a peak. How much of a peak? It depends on the bandwidth, $\alpha_{m}=\ln \left|p_{m}\right|$.


## Outline

## (1) IIR Filters

(2) Impulse Response of an IIR Filter
(3) Implementation: Direct, Serial

4 Filter Design Methods

## Impulse Response of a One-Pole Filter

Consider a one-pole IIR Filter:

$$
H(z)=\frac{C}{1-p_{m} z^{-1}}
$$

We already know this one. The impulse response is

$$
h[n]=C\left(p_{m}\right)^{n} u[n]
$$

## Partial Fraction Expansion

Consider a more complicated IIR filter:

$$
H(z)=\frac{\prod_{m=1}^{M}\left(1-r_{m} / z\right)}{\prod_{m=1}^{N}\left(1-p_{m} / z\right)}
$$

The partial fraction expansion theorem (PFE) says that, if $M \leq N$, then we can write

$$
\frac{\prod_{m=1}^{M}\left(1-r_{m} / z\right)}{\prod_{m=1}^{N}\left(1-p_{m} / z\right)}=C_{0}+\sum_{m=1}^{N} \frac{C_{m}}{1-p_{m} / z}
$$

Where $C_{0}=1$ if $M=N$, otherwise $C_{0}=0$.

## Proof of the PFE Theorem

Let's prove this:

$$
\frac{\prod_{m=1}^{M}\left(1-r_{m} / z\right)}{\prod_{m=1}^{N}\left(1-p_{m} / z\right)}=C_{0}+\sum_{m=1}^{N} \frac{C_{m}}{1-p_{m} / z}
$$

Multiply both sides of the equation by $\prod_{m=1}^{N}\left(1-p_{m} / z\right)$. That gives:

$$
\prod_{m=1}^{M}\left(1-r_{m} / z\right)=C_{0} \prod_{m=1}^{N}\left(1-p_{m} / z\right)+C_{1} \prod_{m=2}^{N}\left(1-p_{m} / z\right)+\ldots
$$

- Since the coefficients $C_{1}, \ldots, C_{N}$ are completely up to us, we can choose them so that the LHS equals the RHS.
- The LHS is a polynomial of order M. All of the terms on the RHS are polynomials of order $N-1$ except the $C_{0}$ term, which has order $N$. Therefore, we only need the $C_{0}$ term if $M=N$; if $M<N$, we can set $C_{0}=0$.


## Finding the Coefficients

To find the $k^{\text {th }}$ coefficient, $C_{k}$, we start with this equation:

$$
\frac{\prod_{m=1}^{M}\left(1-r_{m} / z\right)}{\prod_{m=1}^{N}\left(1-p_{m} / z\right)}=C_{0}+\sum_{m=1}^{N} \frac{C_{m}}{1-p_{m} / z}
$$

Multiply both sides by $\left(1-p_{k} / z\right)$. That gives:

$$
\frac{\prod_{m=1}^{M}\left(1-r_{m} / z\right)}{\prod_{m \neq k}\left(1-p_{m} / z\right)}=C_{0}\left(1-p_{k} / z\right)+C_{k}+\sum_{m \neq k} C_{m} \frac{1-p_{k} / z}{1-p_{m} / z}
$$

Then if we evaluate at $z=p_{k}$, all terms on the RHS disappear except the $C_{k}$ term:

$$
\left.\frac{\prod_{m=1}^{M}\left(1-r_{m} / z\right)}{\prod_{m \neq k}\left(1-p_{m} / z\right)}\right|_{z=p_{k}}=C_{k}
$$

## Partial Fraction Expansion Example

Suppose

$$
H(z)=\frac{\left(1-(0.9) e^{-j 2 \pi / 3} / z\right)\left(1-(0.9) e^{j 2 \pi / 3} / z\right)}{\left(1-(0.9) e^{-j \pi / 3} / z\right)\left(1-(0.9) e^{j \pi / 3} / z\right)}
$$

The PFE theorem tells us that

$$
H(z)=1+\frac{C_{1}}{1-(0.9) e^{-j \pi / 3 / z}}+\frac{C_{1}}{1-(0.9) e^{j \pi / 3} / z}
$$

where

$$
\begin{gathered}
C_{1}=\left.\frac{\left(1-(0.9) e^{-j 2 \pi / 3} / z\right)\left(1-(0.9) e^{j 2 \pi / 3} / z\right)}{\left(1-0.9 e^{j \pi / 3}\right) / z}\right|_{z=0.9 e^{-j \pi / 3}} \\
C_{1}=\frac{(1+j)(1+1)}{(1-j)}=2 j
\end{gathered}
$$

## Partial Fraction Expansion Example

$$
\begin{gathered}
H(z)=\frac{\left(1-(0.9) e^{-j 2 \pi / 3 / z)\left(1-(0.9) e^{j 2 \pi / 3} / z\right)}\right.}{\left(1-(0.9) e^{-j \pi / 3 / z)\left(1-(0.9) e^{j \pi / 3} / z\right)}\right.} \\
C_{2}=\left.\frac{\left(1-0.9 e^{-j 2 \pi / 3 / z)\left(1-0.9 e^{j 2 \pi / 3 / z)}\right.}\right.}{\left(1-0.9 e^{-j \pi / 3}\right) / z}\right|_{z=0.9 e^{j \pi / 3}} \\
C_{2}=\frac{(1+1)(1-j)}{(1+j)}=-2 j
\end{gathered}
$$

So

$$
H(z)=1+\frac{2 j}{1-0.9 e^{-j \pi / 3 / z}}-\frac{2 j}{1-0.9 e^{j \pi / 3 / z}}
$$

## Impulse Response Example

Suppose

$$
\begin{aligned}
H(z) & =\frac{\left(1-0.9 e^{-j 2 \pi / 3} / z\right)\left(1-0.9 e^{j 2 \pi / 3} / z\right)}{\left(1-0.9 e^{-j \pi / 3} / z\right)\left(1-0.9 e^{j \pi / 3} / z\right)} \\
H(z) & =1+\frac{2 j}{1-0.9 e^{-j \pi / 3 / z}}-\frac{2 j}{1-0.9 e^{j \pi / 3 / z}}
\end{aligned}
$$

So

$$
h[n]=\delta[n]+2 j(0.9)^{n} e^{-j \pi n / 3} u[n]-2 j(0.9)^{n} e^{j \pi n / 3} u[n]
$$

Combining the $p_{1}=0.9 e^{-j \pi / 3}$ and $p_{2}=0.9 e^{j \pi / 3}$ terms, we get

$$
h[n]=\delta[n]-(0.9)^{n} \sin \left(\frac{\pi n}{3}\right) u[n]
$$

## Impulse Response of an IIR Filter

Consider a more complicated IIR filter:

$$
H(z)=\frac{\prod_{m=1}^{M}\left(1-r_{m} / z\right)}{\prod_{m=1}^{N}\left(1-p_{m} / z\right)}=C_{0}+\sum_{m=1}^{N} \frac{C_{m}}{1-p_{m} / z}
$$

The impulse response is

$$
h[n]=C_{0} \delta[n]+\sum_{m=1}^{N} C_{m}\left(p_{m}\right)^{n} u[n]
$$

Notice that $h[n]$ is real if and only if the poles come in complex-conjugate pairs. Let's assume that this is the case, therefore we have only two possibilities for each pole:

- $p_{m}$ might be real-valued, in which case $C_{m}$ is also real-valued, or
- $p_{m}$ and $p_{m+1}$ might be a complex conjugage pair, $p_{m+1}=p_{m}^{*}$, meaning that $\left|p_{m+1}\right|=\left|p_{m}\right|$, and $\angle p_{m+1}=-\angle p_{m}$. In this case, it will always turn out that $C_{m+1}=C_{m}^{*}$.


## Outline

## (1) IIR Filters

## (2) Impulse Response of an IIR Filter

(3) Implementation: Direct, Serial

4 Filter Design Methods

## Implementation: Direct Form

Given $r_{m}$ and $p_{m}$, we need to find the LCCDE coefficients $a_{m}$ and $b_{m}$. We do this by multiplying out the polynomials:

$$
\begin{aligned}
& \prod_{m=1}^{M}\left(1-r_{m} z^{-1}\right)=1+\sum_{m=1}^{M} b_{m} z^{-m} \\
& \prod_{m=1}^{N}\left(1-p_{m} z^{-1}\right)=1-\sum_{m=1}^{N} a_{m} z^{-m}
\end{aligned}
$$

Then we implement it in direct form as

$$
y[n]=x[n]+\sum_{m=1}^{M} b_{m} x[n-m]+\sum_{m=1}^{N} a_{m} y[n-m]
$$

## Direct Form Example

Let's use the same example:

$$
\begin{gathered}
\left(1-0.9 e^{-j 2 \pi / 3} z^{-1}\right)\left(1-0.9 e^{j 2 \pi / 3} z^{-1}\right) \\
=1-2(0.9) \cos \left(\frac{2 \pi}{3}\right) z^{-1}+(0.9)^{2} z^{-2} \\
=1+0.9 z^{-1}+0.81 z^{-2} \\
\left(1-0.9 e^{-j \pi / 3} z^{-1}\right)\left(1-0.9 e^{j \pi / 3} z^{-1}\right) \\
=1-2(0.9) \cos \left(\frac{\pi}{6}\right) z^{-1}+(0.9)^{2} z^{-2} \\
=1-0.9 z^{-1}+0.81 z^{-2}
\end{gathered}
$$

So we implement it in direct form as

$$
y[n]=x[n]+0.9 x[n-1]+0.81 x[n-2]+0.9 y[n-1]-0.81 y[n-2]
$$

## Serial Form

The problem with direct form is that, if $N$ is very large, we have to multiply out a very long polynomial. The resulting floating-point roundoff error sometimes causes the implemented filter to be very different from the filter we want. The solution is to divide the filter into order-2 subfilters:

$$
H(z)=H_{1}(z) H_{2}(z) \ldots H_{\frac{N}{2}}(z)
$$

This corresponds to filtering the signal with one filter after another, like this:

$$
\begin{aligned}
V_{1}(z)= & H_{1}(z) X(z) \\
V_{2}(z)= & H_{2}(z) V_{1}(z) \\
\vdots & \vdots \\
Y(z)= & H_{\frac{N}{2}}(z) V_{\frac{N}{2}-1}(z)
\end{aligned}
$$

The reason we choose to group the poles into groups of two is so that we can have real-valued filter coefficients.

$$
H_{k}(z)=\frac{\left(1-r_{2 k} z^{-1}\right)\left(1-r_{2 k+1} z^{-1}\right)}{\left(1-p_{2 k} z^{-1}\right)\left(1-p_{2 k+1} z^{-1}\right)}
$$

If $\left|r_{2 k+1}\right|=\left|r_{2 k}\right|, \angle r_{2 k+1}=-\angle r_{2 k},\left|p_{2 k+1}\right|=\left|p_{2 k}\right|$, and $\angle p_{2 k+1}=-\angle p_{2 k}$, then

$$
H_{k}(z)=\frac{1-2\left|r_{2 k}\right| \cos \left(\angle r_{2 k}\right) z^{-1}+\left|r_{2 k}\right|^{2} z^{-2}}{1-2\left|p_{2 k}\right| \cos \left(\angle p_{2 k}\right) z^{-1}+\left|p_{2 k}\right|^{2} z^{-2}}
$$

...so all the filter coefficients are real numbers.

## Series Example

Suppose we want to implement a 4 th-order filter, with

- Zeros: $r_{1}=0.9 e^{j 2 \pi / 3}, r_{2}=0.9 e^{-j 2 \pi / 3}, r_{3}=0.9 e^{j 3 \pi / 4}$, $r_{4}=0.9 e^{-j 3 \pi / 4}$.
- Poles: $p_{1}=0.9 e^{j \pi / 3}, p_{2}=0.9 e^{-j \pi / 3}, p_{3}=0.9 e^{j \pi / 4}$, $p_{4}=0.9 e^{-j \pi / 4}$.
We can group them into two groups:

$$
\begin{aligned}
& H_{1}(z)=\frac{\left(1-0.9 e^{j 2 \pi / 3} z^{-1}\right)\left(1-0.9 e^{-j 2 \pi / 3} z^{-1}\right)}{\left(1-0.9 e^{j \pi / 3} z^{-1}\right)\left(1-0.9 e^{-j \pi / 3} z^{-1}\right)} \\
& H_{2}(z)=\frac{\left(1-0.9 e^{j 3 \pi / 4} z^{-1}\right)\left(1-0.9 e^{-j 3 \pi / 4} z^{-1}\right)}{\left(1-0.9 e^{j \pi / 4} z^{-1}\right)\left(1-0.9 e^{-j \pi / 4} z^{-1}\right)}
\end{aligned}
$$

## Series Example

$$
\begin{aligned}
& H_{1}(z)=\frac{\left(1-0.9 e^{j 2 \pi / 3} z^{-1}\right)\left(1-0.9 e^{-j 2 \pi / 3} z^{-1}\right)}{\left(1-0.9 e^{j \pi / 3} z^{-1}\right)\left(1-0.9 e^{-j \pi / 3} z^{-1}\right)} \\
& H_{2}(z)=\frac{\left(1-0.9 e^{j 3 \pi / 4} z^{-1}\right)\left(1-0.9 e^{-j 3 \pi / 4} z^{-1}\right)}{\left(1-0.9 e^{j \pi / 4} z^{-1}\right)\left(1-0.9 e^{-j \pi / 4} z^{-1}\right)}
\end{aligned}
$$

Multiplying them out, we get

$$
\begin{gathered}
H_{1}(z)=\frac{1+0.9 z^{-1}+0.81 z^{-1}}{1-0.9 z^{-1}+0.81 z^{-1}} \\
H_{2}(z)=\frac{1+0.9 \sqrt{2} z^{-1}+0.81 z^{-1}}{1-0.9 \sqrt{2} z^{-1}+0.81 z^{-1}}
\end{gathered}
$$

## Series Example

$$
\begin{gathered}
H_{1}(z)=\frac{1+0.9 z^{-1}+0.81 z^{-1}}{1-0.9 z^{-1}+0.81 z^{-1}} \\
H_{2}(z)=\frac{1+0.9 \sqrt{2} z^{-1}+0.81 z^{-1}}{1-0.9 \sqrt{2} z^{-1}+0.81 z^{-1}}
\end{gathered}
$$

We can implement the series connection of these two filters as

$$
\begin{aligned}
& v[n]=x[n]+0.9 x[n-1]+0.81 x[n-2]+0.9 v[n-1]-0.81 v[n-2] \\
& y[n]=v[n]+0.9 \sqrt{2} v[n-1]+0.81 v[n-2]+0.9 \sqrt{2} y[n-1]-0.81 y[n-2]
\end{aligned}
$$

## Outline

## (1) IIR Filters

(2) Impulse Response of an IIR Filter
(3) Implementation: Direct, Serial

4 Filter Design Methods

## Filter Design Methods

(1) Notch Filter: to cancel narrowband noise at frequency $\omega_{c}$, you set the zeros to $r_{2}=r_{1}^{*}=e^{-j \omega_{c}}$, and set the poles to $p_{2}=p_{1}^{*}=a e^{-j \omega_{c}}$, for some real number $a<1$.
(2) LPC (Linear Predictive Coding): We can model a resonant production mechanism, like human speech, musical instruments, ventilation ducts, and so on, by finding the resonant frequencies and bandwidths of the system, and by setting $p_{m}$ to match.
(3) Analog Filter Design Methods: Low-pass, high-pass, and bandpass filters can be designed using old-fashioned filter design methods, then converted from analog to digital. There are programs that can do this for you. The three most common methods are Butterworth (no ripple, wide transition band; this is usually the one you want), Elliptical (smallest transition band, but lots of ripple), Chebyshev (intermediate between the others).

