Lecture 14: Windowing

ECE 401: Signal and Image Analysis

University of Illinois

$$
4 / 4 / 2017
$$

(1) Windowing
(2) LCCDEs
(3) Z Transform

Outline

(1) Windowing

(2) LCCDEs

(3) Z Transform

Windowing Review

The following system implements a lowpass filter with a cutoff of $\omega_{c}=\frac{\pi}{6}$:

$$
y[n]=\sum_{m=-17}^{17} x[n-m]\left(\frac{\sin (\pi m / 6)}{\pi m}\right)
$$

Unfortunately, this filter lets through a lot of energy in the stop-band. Design a filter, $h[m]$, with the same complexity (35 multiplications per output sample), but with a lot less stop-band ripple. Specify an $h[m]$ that accomplishes this goal.

Outline

(1) Windowing

(2) LCCDEs

(3) Z Transform

DTFT Review

Remember the purpose of DTFT is to let us design filters with a carefully specified frequency response:

$$
\begin{gathered}
y[n]=h[n] * x[n] \leftrightarrow Y(\omega)=H(\omega) X(\omega) \\
X(\omega)=\sum_{m=-\infty}^{\infty} x[m] e^{-j \omega m}
\end{gathered}
$$

LCCDE

LCCDEs (linear constant coefficient difference equations) are a large important class of linear time-invariant systems. An LCCDE is defined by a set of feedforward coefficients $b_{m}, 0 \leq m \leq M-1$, and a set of feedback coefficients $a_{n}, 1 \leq n \leq N-1$:

$$
y[n]=\sum_{m=0}^{M-1} b_{m} x[n-m]+\sum_{n=1}^{N-1} a_{n} y[n-m]
$$

For example, an FIR filter is a sub-class of LCCDE, with $b_{m}=h[m]$:

$$
y_{F I R}[n]=\sum_{m=0}^{M-1} h[m] x[n-m]
$$

LCCDE: the Feedback Term

The feedback term in an LCCDE allows it to represent certain types of IIR (infinite impulse response) filters. For example, consider

$$
y[n]=x[n]+0.9 y[n-1]
$$

Notice that the impulse response of this system is

$$
h[n]=(0.9)^{n} u[n]
$$

LCCDE: Second Order Feedback

Or consider:

$$
y[n]=2 a \sin (\theta) x[n-1]+2 a \cos (\theta) y[n-1]-a^{2} y[n-2]
$$

The impulse response of this system can be calculated to be...

$$
h[n]= \begin{cases}0 & n=0 \\ 2 a \sin (\theta) & n=1 \\ 4 a^{2} \sin (\theta) \cos (\theta)=2 a^{2} \sin (2 \theta) & n=2 \\ 4 a^{3} \cos (\theta) \sin (2 \theta)-2 a^{3} \sin (\theta)=2 a^{3} \sin (3 \theta) & n=3 \\ \cdots & \cdots \\ 2 a^{n} \sin (n \theta) & n \geq 0\end{cases}
$$

The above analysis is kinda clever, but much too hard to be done routinely. We need a better method to analyze feedback LCCDEs.

Analysis of LCCDEs using DTFT

Remember that the DTFT is linear. Therefore we can take the DTFT of both sides of this equation:

$$
y[n]=\sum_{m=0}^{M-1} b_{m} x[n-m]+\sum_{n=1}^{N-1} a_{n} y[n-m]
$$

In order to get:

$$
Y(\omega)=\sum_{m=0}^{M-1} b_{m} \mathcal{F}\{x[n-m]\}+\sum_{n=1}^{N-1} a_{n} \mathcal{F}\{y[n-m]\}
$$

where $\mathcal{F}\{x[n]\}$ means "the DTFT of $x[n]$ ". Obviously, the DTFT of $x[n]$ is $X(\omega)$. But what is $\mathcal{F}\{x[n-m]\}$?

Time-Shift Property of DTFT

Definition of the DTFT:

$$
\mathcal{F}\{x[n-m]\}=\sum_{n=-\infty}^{\infty} x[n-m] e^{-j \omega n}
$$

Define $k=n-m$, so

$$
\begin{gathered}
\mathcal{F}\{x[n-m]\}=\sum_{k=-\infty}^{\infty} x[k] e^{-j \omega k} e^{-j \omega m} \\
\mathcal{F}\{x[n-m]\}=e^{-j \omega m} X(\omega)
\end{gathered}
$$

Analysis of LCCDEs using DTFT

Using the time-shift property of the DTFT, we can transform both sides of

$$
y[n]=\sum_{m=0}^{M-1} b_{m} x[n-m]+\sum_{n=1}^{N-1} a_{n} y[n-m]
$$

In order to get:

$$
Y(\omega)=\sum_{m=0}^{M-1} b_{m} e^{-j \omega m} X(\omega)+\sum_{n=1}^{N-1} a_{n} e^{-j \omega n} Y(\omega)
$$

Withalittlealgebra, weget $\frac{Y(\omega)}{X(\omega)}=\frac{\sum_{m=0}^{M-1} b_{m} e^{-j \omega m}}{1-\sum_{m=0}^{N-1} a_{m} e^{-j \omega m}}$

Analysis of LCCDEs using DTFT

But remember the convolution property of the DTFT:
$Y(\omega)=H(\omega) X(\omega)$! So

$$
H(\omega)=\frac{\sum_{m=0}^{M-1} b_{m} e^{-j \omega m}}{1-\sum_{m=0}^{N-1} a_{m} e^{-j \omega m}}
$$

Therefore

$$
h[n]=\mathcal{F}^{-1}\left\{\frac{\sum_{m=0}^{M-1} b_{m} e^{-j \omega m}}{1-\sum_{m=0}^{N-1} a_{m} e^{-j \omega m}}\right\}
$$

where \mathcal{F}^{-1} means "inverse Fourier transform of." In other words, if we knew how to inverse transform that thing, then we would know $h[n]$. Unfortunately, we don't know how to inverse transform that thing. . . and so we invent the "Z transform" to help us figure it out.

Outline

(1) Windowing

(2) LCCDEs

(3) Z Transform

Really, the Z transform is just a way to write the DTFT using fewer letters. Instead of writing

$$
X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

we write

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

In particular, the time-shift property of the Z transform is exactly the same as the DTFT one, but with fewer letters:

$$
\mathcal{F}\{x[n-m]\}=e^{-j \omega m} X(\omega), \quad \mathcal{Z}\{x[n-m]\}=z^{-m} X(z)
$$

So instead of

$$
H(\omega)=\frac{\sum_{m=0}^{M-1} b_{m} e^{-j \omega m}}{1-\sum_{m=0}^{N-1} a_{m} e^{-j \omega m}}
$$

we have

$$
H(z)=\frac{\sum_{m=0}^{M-1} b_{m} z^{-m}}{1-\sum_{m=0}^{N-1} a_{m} z^{-m}}
$$

Z Transform of an Exponential Signal

Turning $e^{j \omega}$ into z is useful for a very small, but very important, set of signals. Specifically, it's useful for exponential signals. For example, suppose

$$
x[n]=a^{n} u[n]
$$

Then

$$
\begin{gathered}
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
=\sum_{n=0}^{\infty} a^{n} z^{-n} \\
X(z)=\frac{1}{1-a z^{-1}}, \quad \text { which means that } X(\omega)=\frac{1}{1-a e^{-j \omega}}
\end{gathered}
$$

Z Transform of Sine Wave

A particular kind of exponential signal that's really, really useful is the one called a "sine wave:"

$$
x[n]=2 a^{n} \sin (\theta n) u[n]
$$

Then

$$
X(z)=\sum_{n=0}^{\infty} a^{n}\left(e^{j \theta n}-e^{-j \theta n}\right) z^{-n}
$$

$X(z)=\frac{1}{1-a e^{j \theta} z^{-1}}-\frac{1}{1-a e^{-j \theta} z^{-1}}=\frac{2 a \sin (\theta) z^{-1}}{\left(1-a e^{j \theta} z^{-1}\right)\left(1-a e^{-j \theta} z^{-1}\right)}$
... and you can kinda see why we like writing z instead of $e^{j \omega}$ all the time. It just saves space, really that's the main reason. . .

Z Transform of Cosiune

Another useful kind of exponential is the one called a "cosine:"

$$
x[n]=2 a^{n} \cos (\theta n) u[n]
$$

Then

$$
X(z)=\sum_{n=0}^{\infty} a^{n}\left(e^{j \theta n}+e^{-j \theta n}\right) z^{-n}
$$

$$
X(z)=\frac{1}{1-a e^{j \theta} z^{-1}}+\frac{1}{1-a e^{-j \theta} z^{-1}}=\frac{2-2 a \cos (\theta) z^{-1}}{\left(1-a e^{j \theta} z^{-1}\right)\left(1-a e^{-j \theta} z^{-1}\right)}
$$

The Only Z Transform Pairs that Matter

$$
\begin{gathered}
x[n]=\delta[n] \leftrightarrow X(z)=1 \\
x[n]=a^{n} u[n] \leftrightarrow X(z)=\frac{1}{1-a z^{-1}} \\
x[n]=2 a^{n} \sin (\theta n) u[n] \leftrightarrow X(z)=\frac{2 a \sin (\theta) z^{-1}}{\left(1-a e^{j \theta} z^{-1}\right)\left(1-a e^{-j \theta} z^{-1}\right)} \\
x[n]=2 a^{n} \cos (\theta n) u[n] \leftrightarrow X(z)=\frac{2-2 a \cos (\theta) z^{-1}}{\left(1-a e^{j \theta} z^{-1}\right)\left(1-a e^{-j \theta} z^{-1}\right)}
\end{gathered}
$$

Obviously, these transform pairs relate to the feedback LCCDEs we've solved so far. Let's explore the connection next time.

