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Windowing Review

The following system implements a lowpass filter with a cutoff of
ωc = π

6 :

y [n] =
17∑

m=−17
x [n −m]

(
sin(πm/6)

πm

)
Unfortunately, this filter lets through a lot of energy in the
stop-band. Design a filter, h[m], with the same complexity (35
multiplications per output sample), but with a lot less stop-band
ripple. Specify an h[m] that accomplishes this goal.
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DTFT Review

Remember the purpose of DTFT is to let us design filters with a
carefully specified frequency response:

y [n] = h[n] ∗ x [n]↔ Y (ω) = H(ω)X (ω)

X (ω) =
∞∑

m=−∞
x [m]e−jωm
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LCCDE

LCCDEs (linear constant coefficient difference equations) are a
large important class of linear time-invariant systems. An LCCDE
is defined by a set of feedforward coefficients bm, 0 ≤ m ≤ M − 1,
and a set of feedback coefficients an, 1 ≤ n ≤ N − 1:

y [n] =
M−1∑
m=0

bmx [n −m] +
N−1∑
n=1

any [n −m]

For example, an FIR filter is a sub-class of LCCDE, with
bm = h[m]:

yFIR [n] =
M−1∑
m=0

h[m]x [n −m]
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LCCDE: the Feedback Term

The feedback term in an LCCDE allows it to represent certain
types of IIR (infinite impulse response) filters. For example,
consider

y [n] = x [n] + 0.9y [n − 1]

Notice that the impulse response of this system is

h[n] = (0.9)nu[n]
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LCCDE: Second Order Feedback

Or consider:

y [n] = 2a sin(θ)x [n − 1] + 2a cos(θ)y [n − 1]− a2y [n − 2]

The impulse response of this system can be calculated to be...

h[n] =



0 n = 0
2a sin(θ) n = 1
4a2 sin(θ) cos(θ) = 2a2 sin(2θ) n = 2
4a3 cos(θ) sin(2θ)− 2a3 sin(θ) = 2a3 sin(3θ) n = 3
. . . . . .
2an sin(nθ) n ≥ 0

The above analysis is kinda clever, but much too hard to be done
routinely. We need a better method to analyze feedback LCCDEs.
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Analysis of LCCDEs using DTFT

Remember that the DTFT is linear. Therefore we can take the
DTFT of both sides of this equation:

y [n] =
M−1∑
m=0

bmx [n −m] +
N−1∑
n=1

any [n −m]

In order to get:

Y (ω) =
M−1∑
m=0

bmF {x [n −m]}+
N−1∑
n=1

anF {y [n −m]}

where F {x [n]} means “the DTFT of x [n]”. Obviously, the DTFT
of x [n] is X (ω). But what is F {x [n −m]}?
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Time-Shift Property of DTFT

Definition of the DTFT:

F {x [n −m]} =
∞∑

n=−∞
x [n −m]e−jωn

Define k = n −m, so

F {x [n −m]} =
∞∑

k=−∞
x [k]e−jωke−jωm

F {x [n −m]} = e−jωmX (ω)
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Analysis of LCCDEs using DTFT

Using the time-shift property of the DTFT, we can transform both
sides of

y [n] =
M−1∑
m=0

bmx [n −m] +
N−1∑
n=1

any [n −m]

In order to get:

Y (ω) =
M−1∑
m=0

bme
−jωmX (ω) +

N−1∑
n=1

ane
−jωnY (ω)

Withalittlealgebra,weget
Y (ω)

X (ω)
=

∑M−1
m=0 bme

−jωm

1−
∑N−1

m=0 ame
−jωm



Windowing LCCDEs Z Transform

Analysis of LCCDEs using DTFT

But remember the convolution property of the DTFT:
Y (ω) = H(ω)X (ω)! So

H(ω) =

∑M−1
m=0 bme

−jωm

1−
∑N−1

m=0 ame
−jωm

Therefore

h[n] = F−1
{ ∑M−1

m=0 bme
−jωm

1−
∑N−1

m=0 ame
−jωm

}
where F−1 means “inverse Fourier transform of.” In other words,
if we knew how to inverse transform that thing, then we would
know h[n]. Unfortunately, we don’t know how to inverse transform
that thing. . . and so we invent the “Z transform” to help us figure
it out.
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Really, the Z transform is just a way to write the DTFT using
fewer letters. Instead of writing

X (ω) =
∞∑

n=−∞
x [n]e−jωn

we write

X (z) =
∞∑

n=−∞
x [n]z−n
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In particular, the time-shift property of the Z transform is exactly
the same as the DTFT one, but with fewer letters:

F {x [n −m]} = e−jωmX (ω), Z {x [n −m]} = z−mX (z)

So instead of

H(ω) =

∑M−1
m=0 bme

−jωm

1−
∑N−1

m=0 ame
−jωm

we have

H(z) =

∑M−1
m=0 bmz

−m

1−
∑N−1

m=0 amz
−m
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Z Transform of an Exponential Signal

Turning e jω into z is useful for a very small, but very important,
set of signals. Specifically, it’s useful for exponential signals. For
example, suppose

x [n] = anu[n]

Then

X (z) =
∞∑

n=−∞
x [n]z−n

=
∞∑
n=0

anz−n

X (z) =
1

1− az−1
, which means that X (ω) =

1

1− ae−jω
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Z Transform of Sine Wave

A particular kind of exponential signal that’s really, really useful is
the one called a “sine wave:”

x [n] = 2an sin(θn)u[n]

Then

X (z) =
∞∑
n=0

an
(
e jθn − e−jθn

)
z−n

X (z) =
1

1− ae jθz−1
− 1

1− ae−jθz−1
=

2a sin(θ)z−1

(1− ae jθz−1)(1− ae−jθz−1)

. . . and you can kinda see why we like writing z instead of e jω all
the time. It just saves space, really that’s the main reason. . .
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Z Transform of Cosiune

Another useful kind of exponential is the one called a “cosine:”

x [n] = 2an cos(θn)u[n]

Then

X (z) =
∞∑
n=0

an
(
e jθn + e−jθn

)
z−n

X (z) =
1

1− ae jθz−1
+

1

1− ae−jθz−1
=

2− 2a cos(θ)z−1

(1− ae jθz−1)(1− ae−jθz−1)
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The Only Z Transform Pairs that Matter

x [n] = δ[n]↔ X (z) = 1

x [n] = anu[n]↔ X (z) =
1

1− az−1

x [n] = 2an sin(θn)u[n]↔ X (z) =
2a sin(θ)z−1

(1− ae jθz−1)(1− ae−jθz−1)

x [n] = 2an cos(θn)u[n]↔ X (z) =
2− 2a cos(θ)z−1

(1− ae jθz−1)(1− ae−jθz−1)

Obviously, these transform pairs relate to the feedback LCCDEs
we’ve solved so far. Let’s explore the connection next time.
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