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DTFT Review

When two signals are convolved, their DTFTs get multiplied
together

y [n] = h[n] ∗ x [n]⇔ Y (ω) = H(ω)X (ω)

where

X (ω) =
∞∑

n=−∞
x [n]e−jωn

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω
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Ideal Filters

Probably the most important DTFT pairs are the ideal LPF, BPF,
and HPF:

HLPF (ω) =

{
1 |ω| < ωc

0 else
⇔ hLPF [n] =

{
sin(ωcn)
πn n 6= 0

ωc
π n = 0

HBPF (ω) =

{
1 ω1 < |ω| < ω2

0 else
⇔ hBPF [n] =

{
sin(ω2n)−sin(ω1n)

πn n 6= 0
ω2−ω1
π n = 0

HHPF (ω) =

{
1 ω1 < |ω| ≤ π
0 else

⇔ hHPF [n] =

{
δ[n]− sin(ω1n)

πn n 6= 0
1− ω1

π n = 0
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Real filters are usually FIR

The problem with ideal filters is that
h[n] = sin(ωcn)

πn =
(
ωc
π

)
sinc(ωcn) is infinite length. Infinite

length convolution is not possible on a computer with finite
memory and finite time:

y [n] =
∞∑

m=−∞
h[n]x [n −m]

A real-world filter needs to have finite computation. For that,
it usually needs a finite impulse response (FIR), e.g., a filter
of length N = 2M + 1 requires N multiply operations per
output sample:

y [n] =
M∑

m=−M
h[m]x [n −m]
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Frequency Sampling Doesn’t Work

You’re probably thinking: why FIR? Why not just do it all in the
frequency domain?

x [n]→ X (ω)→ Y (ω) = H(ω)X (ω)→ y [n] (1)

The problem is that we’d need to do this with discrete omega,
ω = 2πk

N , instead of continuous ω. The only way a computer can
do this is using, effectively, a discrete Fourier series:

x [n]→ Xk → Yk = H

(
2πk

N

)
Xk → y [n] (2)

The problem is that Eq. 2 gives a different result from Eq. 1. Eq. 2
pretends that x [n] is periodic, with a period of N samples, even if
it isn’t really. The pretense of periodicity causes artifacts:
multiplying by H(ω) causes the imagined periods of x [n] to blur
into one another. This is called temporal aliasing.
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FIR filters need to be windowed

So we need to do it all in the time domain. This is exactly what
numpy.convolve does:

y [n] =
M∑

m=−M
h[m][n −m]

The problem is that the FIR and IIR (infinite impulse response)
filters are not the same. In fact, they are related by windowing:

hFIR [m] = w [m]hIIR [m] =

{
hIIR [m] |m| ≤ M
0 else

w [m] =

{
1 |m| ≤ M
0 otherwise
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The Result of Windowing

What does windowing do? To get a hint, remember the
convolution property of DTFT:

y [n] = h[n] ∗ x [n]↔ Y (ω) = H(ω)X (ω)

It turns out that almost the same thing works in reverse:

hFIR [n] = w [n]hIIR [n]↔ HFIR(ω) =
1

2π
W (ω) ∗ HIIR(ω)

Now we need to define “convolution in frequency.” We define it
like this:

HFIR(ω) =
1

2π

∫ π

−π
W (θ)HIIR(ω − θ)dθ
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Convolution in Frequency Example: IIR

As an easy-to-compute example, suppose

h[n] =
(ωc

π

)
sinc(ωcn)↔ H(ω) =

{
1 |ω| < ωc

0 otherwise

Suppose we square it:

g [n] = h2[n] =
(ωc

π

)2
sinc2(ωcn)

Then

G (ω) =
1

2π
H(ω) ∗ H(ω) =

{ (
ωc−|ω|
π

)
|ω| < 2ωc

0 otherwise
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Rectangular Window

The most useful window is the rectangular window:

wR [n] =

{
1 |n| ≤ M
0 else

WR(ω) =
sin(ωN/2)

sin(ω/2)

where N = 2M + 1 is the length of the window.
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Windowing with a Rectangular Window

Window with a rectangular window:

hFIR [n] = wR [n]hIIR [n]↔ HFIR(ω) =
1

2π
WR(ω) ∗ HIIR(ω)

Causes the following effects:

HFIR(ω) has ripples in the passband, going up and down,
crossing the value HFIR(ω) = 1 only once every 2π/N radians.

HFIR(ω) has ripples in the stopband, going up and down,
crossing the value HFIR(ω) = 0 only once every 2π/N radians.

HFIR(ω) has a gradual transition band between the passband
and stopband, with a width of 2π/N.
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Other Useful Windows

Sidelobes can be made smaller, at the expense of a wider
transition band.

This is done by making the window less abrupt in the time
domain.
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Other Useful Windows

Triangular (Bartlett):wB [n] =

(
1− |n|

M + 1

)
wR [n]

Hamming Window:wH [n] =
(

0.54 + 0.46 cos
(πn
M

))
wR [n]

Hann Window:wN [n] =
(

0.5 + 0.5 cos
(πn
M

))
wR [n]
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Other Useful Windows

Window First Null First Sidelobe Other Sidelobes

Rectangular ω = 2π
N -13dB 1/N

Triangular ω = 4π
N -26dB 1/N2

Hamming ω = 4π
N -44dB flat

Hann ω = 4π
N -32dB Very Small
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