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Sampled Systems Review

The inputs and outputs are

x(t) =
∞∑

k=−∞
Xke

j2πkt/T0 , y(t) =
∞∑

k=−∞
Yke

j2πkt/T0

Suppose that T0 = 0.001s. Suppose that x(t) is lowpass filtered
by an ideal anti-aliasing filter with a cutoff of 5kHz, then sampled
at Fs = 10kHz to create x [n]. x [n] is then passed through a
5-sample averager to create y [n]:

y [n] =
1

5

4∑
m=0

x [n −m]

Find Yk in terms of Xk .
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Frequency response and sine waves

x [n] = e jkω0n → y [n] = H(kω0)e jkω0n

Frequency response and periodic signals

x [n] =
K∑

k=−K
Xke

jkω0n → y [n] =
K∑

k=−K
Yke

jkω0n

Yk = H(kω0)Xk

What about non-periodic signals?

Can we extend that formula to non-periodic signals?
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DTFT = “Frequency response” of x [n]

H(ω) =
∞∑

m=−∞
h[m]e−jωm, so define X (ω) =

∞∑
n=−∞

x [n]e−jωn

Convolution in Time = Multiplication in Frequency

y [n] = x [n] ∗ h[n]↔ Y (ω) = X (ω)H(ω)
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Proof: Convolution in Time equals Multiplication in
Frequency

y [n] = h[n] ∗ x [n] =
∞∑

m=−∞
h[m]x [n −m]

Y (ω) =
∞∑

n=−∞

( ∑
m=−∞

h[m]x [n −m]

)
e−jωn

=
∞∑

(n−m)=−∞

( ∞∑
m=−∞

h[m]x [n −m]

)
e−jωme−jω(n−m)

=

 ∞∑
(n−m)=−∞

x [n −m]e−jω(n−m)

( ∞∑
m=−∞

h[m]e−jωm

)
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Example: DTFT of a Triangle

Suppose we have y [n] = h[n] ∗ x [n], where

h[n] =

{
1 0 ≤ n ≤ 5
0 otherwise

, x [n] =

{
1 0 ≤ n ≤ 5
0 otherwise

Using graphical convolution, it’s easy to show that

y [n] =


n 0 ≤ n ≤ 5
10− n 5 ≤ n ≤ 10
0 otherwise

But what’s Y (ω)?



Sampled Systems Review DTFT and Convolution Inverse DTFT Ideal Lowpass Filter

Example: DTFT of a Triangle

X (ω) = H(ω) = e−jω(5−1)/2 sin(5ω/2)

sin(ω/2)

Y (ω) = H(ω)X (ω) = e−j5ω
(

sin(5ω/2)

sin(ω/2)

)2
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Example: y [n] = x [n − 3]

Suppose y [n] = x [n − 3]. This is the same as a system with

h[n] = δ[n − 3]↔ H(ω) = e−jω3

Therefore
Y (ω) = e−jω3X (ω)

Time Shift Property of the DTFT

y [n] = x [n − n0]↔ Y (ω) = e−jωn0X (ω)
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Here’s the most important new idea today. The DTFT has an
inverse, just like the Fourier series.

X (ω) =
∞∑

n=−∞
x [n]e−jωn

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω
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Continuous-Time Fourier Series (CTFS)

Time: Continuous (t), Periodic (T0)
Frequency: Aperiodic, Discrete (k)

Xk =
1

T0

∫
x(t)e−jkΩ0tdt, x(t) =

∑
Xke

jkΩ0t

Discrete-Time Fourier Series (DTFS)

Time: Discrete (n), Periodic (N0)
Frequency: Periodic (N0), Discrete (k)

Xk =
1

N0

∑
x [n]e−jkω0n, x [n] =

∑
Xke

jkω0n

Discrete-Time Fourier Transform (DTFT)

Time: Discrete (n), Aperiodic
Frequency: Periodic (2π), Continuous (ω)

X (ω) =
∑

x [n]e−jωn, x [n] =
1

2π

∫
X (ω)e jωndω
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Ideal Lowpass Filter

H(ω) =

{
1 |ω| < ωc

0 otherwise

Goal: can we implement this as y [n] = h[h] ∗ x [n] for some h[n]?
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Ideal Lowpass Filter

h[n] =
1

2π

∫ π

−π
H(ω)e jωndω =

1

2π

∫ ωc

−ωc

e jωndω

=
1

2π

(
1

jn

)[
e jωcn − e−jωcn

]
=

2j sin(ωcn)

2jπn
=

sin(ωcn)

πn
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The Magical Sinc Function

The sinc function (pronounced like “sink”) is defined as:

sinc(x) =
sin(x)

x

It has the characteristics that

sinc(0) =


1 x = 0
0 x = `π, any integer ` except ` = 0
other values other values of x
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Rectangle in Time ↔ Sinc in Frequency

h[n] =

{
1 0 ≤ n ≤ N − 1
0 otherwise

↔ H(ω) = e−jω(N−1)/2 sin(ωN/2)

sin(ω/2)

Sinc in Time ↔ Rectangle in Frequency

h[n] =
sin(ωcn)

πn
↔ H(ω) =

{
1 −ωc ≤ ω ≤ ωc

0 otherwise
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