Inverse DTFT

Lecture 13: Discrete Time Fourier Transform (DTFT)

ECE 401: Signal and Image Analysis

University of Illinois

3/9/2017

Inverse DTFT

Ideal Lowpass Filter

2 DTFT and Convolution

Inverse DTFT

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Sampled Systems Review

The inputs and outputs are

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}, \quad y(t) = \sum_{k=-\infty}^{\infty} Y_k e^{j2\pi kt/T_0}$$

Suppose that $T_0 = 0.001$ s. Suppose that x(t) is lowpass filtered by an ideal anti-aliasing filter with a cutoff of 5kHz, then sampled at $F_s = 10$ kHz to create x[n]. x[n] is then passed through a 5-sample averager to create y[n]:

$$y[n] = \frac{1}{5} \sum_{m=0}^{4} x[n-m]$$

Find Y_k in terms of X_k .

Inverse DTFT

Ideal Lowpass Filter

Outline

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Frequency response and sine waves

$$x[n] = e^{jk\omega_0 n} \to y[n] = H(k\omega_0)e^{jk\omega_0 n}$$

Frequency response and periodic signals

$$x[n] = \sum_{k=-K}^{K} X_k e^{jk\omega_0 n} \to y[n] = \sum_{k=-K}^{K} Y_k e^{jk\omega_0 n}$$
$$Y_k = H(k\omega_0)X_k$$

What about non-periodic signals?

Can we extend that formula to non-periodic signals?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

DTFT = "Frequency response" of x[n]

$$H(\omega) = \sum_{m=-\infty}^{\infty} h[m]e^{-j\omega m}$$
, so define $X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$

Convolution in Time = Multiplication in Frequency

$$y[n] = x[n] * h[n] \leftrightarrow Y(\omega) = X(\omega)H(\omega)$$

Sampled Systems Review 0 DTFT and Convolution

Inverse DTFT

Ideal Lowpass Filter

Proof: Convolution in Time equals Multiplication in Frequency

$$y[n] = h[n] * x[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$
$$Y(\omega) = \sum_{n=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} h[m]x[n-m]\right) e^{-j\omega n}$$
$$= \sum_{(n-m)=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} h[m]x[n-m]\right) e^{-j\omega m} e^{-j\omega(n-m)}$$
$$= \left(\sum_{(n-m)=-\infty}^{\infty} x[n-m]e^{-j\omega(n-m)}\right) \left(\sum_{m=-\infty}^{\infty} h[m]e^{-j\omega m}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sampled Systems Review DTFT and Convolution Inverse DTFT Ide: 0 000000

Example: DTFT of a Triangle

Suppose we have y[n] = h[n] * x[n], where

$$h[n] = \left\{ egin{array}{ccc} 1 & 0 \leq n \leq 5 \\ 0 & ext{otherwise} \end{array}
ight., \quad x[n] = \left\{ egin{array}{ccc} 1 & 0 \leq n \leq 5 \\ 0 & ext{otherwise} \end{array}
ight.$$

Using graphical convolution, it's easy to show that

$$y[n] = \left\{egin{array}{ccc} n & 0 \leq n \leq 5 \ 10 - n & 5 \leq n \leq 10 \ 0 & ext{otherwise} \end{array}
ight.$$

(日) (日) (日) (日) (日) (日) (日) (日)

But what's $Y(\omega)$?

Sampled Systems Review 0 DTFT and Convolution

Inverse DTF1

Ideal Lowpass Filter

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: DTFT of a Triangle

$$X(\omega) = H(\omega) = e^{-j\omega(5-1)/2} \frac{\sin(5\omega/2)}{\sin(\omega/2)}$$
$$Y(\omega) = H(\omega)X(\omega) = e^{-j5\omega} \left(\frac{\sin(5\omega/2)}{\sin(\omega/2)}\right)^2$$

Sampled Systems Review	DTFT and Convolution	Inverse DTFT	Ideal Lowpass Filt
	00000		

Example: y[n] = x[n-3]

Suppose y[n] = x[n-3]. This is the same as a system with

$$h[n] = \delta[n-3] \leftrightarrow H(\omega) = e^{-j\omega 3}$$

Therefore

$$Y(\omega) = e^{-j\omega 3}X(\omega)$$

Time Shift Property of the DTFT

$$y[n] = x[n - n_0] \leftrightarrow Y(\omega) = e^{-j\omega n_0}X(\omega)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Inverse DTFT

Ideal Lowpass Filter

Outline

2 DTFT and Convolution

Sampled Systems Review	DTFT and Convolution	Inverse DTFT	Ideal Lowpass Filter

Here's the most important new idea today. The DTFT has an inverse, just like the Fourier series.

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

۲

۲

۲

- Continuous-Time Fourier Series (CTFS)
 - Time: Continuous (t), Periodic (T₀)
 - Frequency: Aperiodic, Discrete (k)

$$X_k = rac{1}{T_0}\int x(t)e^{-jk\Omega_0 t}dt, \quad x(t) = \sum X_k e^{jk\Omega_0 t}$$

- Discrete-Time Fourier Series (DTFS)
 - Time: Discrete (*n*), Periodic (*N*₀)
 - Frequency: Periodic (N_0) , Discrete (k)

$$X_k = \frac{1}{N_0} \sum x[n] e^{-jk\omega_0 n}, \quad x[n] = \sum X_k e^{jk\omega_0 n}$$

- Discrete-Time Fourier Transform (DTFT)
 - Time: Discrete (n), Aperiodic
 - Frequency: Periodic (2π) , Continuous (ω)
 - $X(\omega) = \sum x[n]e^{-j\omega n}, \quad x[n] = \frac{1}{2\pi}\int X(\omega)e^{j\omega n}d\omega$

Inverse DTFT

Ideal Lowpass Filter

Sampled Systems Review

2 DTFT and Convolution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ideal Lowpass Filter

$$H(\omega) = \left\{ egin{array}{cc} 1 & |\omega| < \omega_c \ 0 & ext{otherwise} \end{array}
ight.$$

Goal: can we implement this as y[n] = h[h] * x[n] for some h[n]?

Ideal Lowpass Filter

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\omega) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi} \left(\frac{1}{jn}\right) \left[e^{j\omega_c n} - e^{-j\omega_c n}\right]$$
$$= \frac{2j\sin(\omega_c n)}{2j\pi n} = \frac{\sin(\omega_c n)}{\pi n}$$

The Magical Sinc Function	

The sinc function (pronounced like "sink") is defined as:

$$\operatorname{sinc}(x) = \frac{\sin(x)}{x}$$

It has the characteristics that

 $\operatorname{sinc}(0) = \begin{cases} 1 & x = 0 \\ 0 & x = \ell \pi, \text{ any integer } \ell \text{ except } \ell = 0 \\ \text{other values other values of } x \end{cases}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rectangle in Time \leftrightarrow Sinc in Frequency

$$h[n] = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases} \leftrightarrow H(\omega) = e^{-j\omega(N-1)/2} \frac{\sin(\omega N/2)}{\sin(\omega/2)}$$

Sinc in Time \leftrightarrow Rectangle in Frequency

$$h[n] = \frac{\sin(\omega_c n)}{\pi n} \leftrightarrow H(\omega) = \begin{cases} 1 & -\omega_c \le \omega \le \omega_c \\ 0 & \text{otherwise} \end{cases}$$