Lecture 10: Linearity and Time Invariance

ECE 401: Signal and Image Analysis

University of Illinois

2/28/2017

(1) Convolution Review
(2) Linearity
(3) Time Invariance
(4) Convolution Works IFF LTI

Outline

(1) Convolution Review
(2) Linearity
(3) Time Invariance

4 Convolution Works IFF LTI

Convolution

Find $y[n]=x[n] * h[n]$ using graphical convolution, where

$$
\begin{gathered}
x[n]= \begin{cases}1 & -1 \leq n \leq 1 \\
0 & \text { otherwise }\end{cases} \\
h[n]=\delta[n]-\delta[n-1]
\end{gathered}
$$

Outline

(1) Convolution Review

(2) Linearity
(3) Time Invariance
(4) Convolution Works IFF LTI

Linearity $=$ Scaling and Adding

Suppose, when you put $x_{k}[n]$ into some system, $y_{k}[n]$ is the signal that comes out, for $1 \leq k \leq 3$. Then the system is linear if and only if

$$
x_{3}[n]=a x_{1}[n]+b x_{2}[n] \Leftrightarrow y_{3}[n]=a y_{1}[n]+b y_{2}[n]
$$

Example

$$
y[n]=x^{2}[n]
$$

Then

$$
y_{3}[n]=x_{3}^{2}[n]=a^{2} x_{1}^{2}[n]+2 a b x_{1}[n] x_{2}[n]+b^{2} x_{2}^{2}[n]
$$

but

$$
a y_{1}[n]+b y_{2}[n]=a x_{1}^{2}[n]+b x_{2}^{2}[n]
$$

These are not equal, so the system is not linear.

Example

$$
y[n]=n x[n]
$$

Then

$$
y_{3}[n]=n x_{3}[n]=a n x_{1}[n]+b n x_{2}[n]
$$

but

$$
a y_{1}[n]+b y_{2}[n]=a n x_{1}[n]+b n x_{2}[n]
$$

These are equal, so the system is linear.

Example

$$
y[n]=\sum_{t=-\infty}^{n} x[t]
$$

Then

$$
y_{3}[n]=\sum_{t=-\infty}^{n} x_{3}[t]=a \sum_{t=-\infty}^{n} x_{1}[t]+b \sum_{t=-\infty}^{n} x_{2}[t]
$$

but

$$
a y_{1}[n]+b y_{2}[n]=a \sum_{t=-\infty}^{n} x_{1}[t]+b \sum_{t=-\infty}^{n} x_{2}[t]
$$

These are equal, so the system is linear.

Outline

(1) Convolution Review

(2) Linearity

(3) Time Invariance

4 Convolution Works IFF LTI

Time Invariance $=$ Shifting

Suppose, when you put $x_{k}[n]$ into some system, $y_{k}[n]$ is the signal that comes out, for $1 \leq k \leq 3$. Then the system is time-invariant if and only if

$$
x_{2}[n]=x_{1}[n-m] \Leftrightarrow y_{2}[n]=y_{1}[n-m]
$$

Example

$$
y[n]=x^{2}[n]
$$

Then

$$
y_{2}[n]=x_{2}^{2}[n]=x_{1}^{2}[n-m]
$$

but

$$
y_{1}[n-m]=x_{1}^{2}[n-m]
$$

These are equal, so the system is time-invariant.

Example

$$
y[n]=n x[n]
$$

Then

$$
y_{2}[n]=n x_{2}[n]=n x_{1}[n-m]
$$

but

$$
y_{1}[n-m]=(n-m) x_{1}[n-m]
$$

These are not equal, so the system is not time-invariant.

Example

$$
y[n]=\sum_{t=-\infty}^{n} x[t]
$$

Then

$$
y_{2}[n]=\sum_{t=-\infty}^{n} x_{2}[t]=\sum_{t=-\infty}^{n} x_{1}[t-m]=\sum_{\tau=-\infty}^{n-m} x_{1}[\tau]
$$

but

$$
y_{1}[n-m]=\sum_{t=-\infty}^{n-m} x_{1}[t]
$$

These are equal, so the system is time-invariant.

Outline

(1) Convolution Review

(2) Linearity

(3) Time Invariance
(4) Convolution Works IFF LTI

This system is linear and time invariant:

$$
y[n]=\sum_{t=-\infty}^{n} x[t]
$$

That means we can compute its output, in response to any input, using a convolve function (for example, using np.convolve):

$$
y[n]=h[n] * x[n]
$$

To find $h[n]$, we just put $x[n]=\delta[n]$ into the system, and see what comes out. What comes out is

$$
h[n]= \begin{cases}1 & n \geq 0 \\ 0 & n<0\end{cases}
$$

Remember, by the way, that this signal is called a unit step function, and is denoted $u[n]$, thus for this system, $h[n]=u[n]$.

