UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering

ECE 498MH Signal and Image Analysis

Homework 2

Fall 2014

Assigned: Thursday, 1/26/2017
Due: Thursday, 2/2/2017
Reading: 1-40

Do one of the following three problems, and submit by $12: 30 \mathrm{pm} 2 / 2 / 2017$. Homework will be handed back on $2 / 7 / 2017$. If you don't like your grade, then you can hand in either of the other problems for a grade, no later than 2/14/2017.

Problem 2.1

Consider the signal

$$
x(t)=|\cos (2 \pi t)|
$$

(a) Sketch $x(t)$.
(b) What is its period, T_{0} ? What is its fundamental frequency, Ω_{0} ?
(c) Find the Fourier series coefficients.

- Hint \#1: notice that $|\cos (2 \pi t)|$ is sometimes equal to $\cos (2 \pi t)$, and sometimes equal to $-\cos (2 \pi t)$, so if you choose the right period of time over which to integrate, you might be able to get rid of the absolute value signs.
- Hint $\# 2$: use the relationship $\cos (2 \pi t)=\frac{1}{2}\left(e^{j 2 \pi t}+e^{-j 2 \pi t}\right)$ so that you can integrate exponentials instead of integrating cosines.
- Hint \#3:

$$
\begin{aligned}
\int_{c}^{d}\left(e^{a t}+e^{b t}\right) d t & =\left[\frac{1}{a} e^{a t}+\frac{1}{b} e^{b t}\right]_{c}^{d} \\
& =\left(\frac{1}{a} e^{a d}+\frac{1}{b} e^{b d}\right)-\left(\frac{1}{a} e^{a c}+\frac{1}{b} e^{b c}\right)
\end{aligned}
$$

Problem 2.2

Consider the signal

$$
x(t)=1-|\sin (200 \pi t)|
$$

(a) Sketch $x(t)$.
(b) What is its period, T_{0} ? What is its fundamental frequency, Ω_{0} ?
(c) Find the Fourier series coefficients.

- Hint \#1: notice that $|\sin (200 \pi t)|$ is sometimes equal to $\cos (2 \pi t)$, and sometimes equal to $-\sin (200 \pi t)$, so if you choose the right period of time over which to integrate, you might be able to get rid of the absolute value signs.
- Hint $\# 2$: use the relationship $\sin (200 \pi t)=\frac{1}{2 j}\left(e^{j 200 \pi t}-e^{-j 200 \pi t}\right)$ so that you can integrate exponentials instead of integrating cosines.
- Hint \#3:

$$
\begin{aligned}
\int_{c}^{d}\left(e^{a t}+e^{b t}\right) d t & =\left[\frac{1}{a} e^{a t}+\frac{1}{b} e^{b t}\right]_{c}^{d} \\
& =\left(\frac{1}{a} e^{a d}+\frac{1}{b} e^{b d}\right)-\left(\frac{1}{a} e^{a c}+\frac{1}{b} e^{b c}\right)
\end{aligned}
$$

Problem 2.3

Consider the signal

$$
x(t)= \begin{cases}1-e^{-100|t|} & -0.01 \leq t \leq 0.01 \\ x(t-0.02) & \text { otherwise }\end{cases}
$$

(a) Sketch $x(t)$.
(b) What is its period, T_{0} ? What is its fundamental frequency, Ω_{0} ?
(c) Find the Fourier series coefficients.

- Hint \#1: for any time points $a \leq b \leq c$,

$$
\int_{a}^{c} x(t) d t=\int_{a}^{b} x(t) d t+\int_{b}^{c} x(t) d t
$$

- Hint \#2: notice that $e^{-100|t|}$ is sometimes equal to $e^{-100 t}$, and sometimes equal to $e^{100 t}$, so if you divide the integral as shown in Hint \#1, then you won't have to use the absolute value sign any more. (And notice that $e^{-100 t} e^{j k \omega_{0} t}=e^{\left(-100+j k \omega_{0}\right) t}$).
- Hint \#3:

$$
\begin{aligned}
\int_{c}^{d}\left(e^{a t}+e^{b t}\right) d t & =\left[\frac{1}{a} e^{a t}+\frac{1}{b} e^{b t}\right]_{c}^{d} \\
& =\left(\frac{1}{a} e^{a d}+\frac{1}{b} e^{b d}\right)-\left(\frac{1}{a} e^{a c}+\frac{1}{b} e^{b c}\right)
\end{aligned}
$$

