UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 498MH SIGNAL AND IMAGE ANALYSIS

Homework 7

Fall 2014

Assigned: Thursday, October 23, 2014 Due: Wednesday, November 5, 2014

Reading:

http://www.vyssotski.ch/BasicsOfInstrumentation/SpikeSorting/Design_of_FIR_Filters.pdf

1 Windowed FIR Design

Do **one** of the following three problems.

Problem 7.1.1

Suppose you have a signal, $x_c(t)$, that is sampled at $F_s = 16,000$ samples/second, creating a signal x[n]. You would like to implement a discrete time highpass filter with a cutoff frequency of $f_c = 4000$ Hz.

- (a) What is the discrete-time cutoff frequency, ω_c , in radians/sample?
- (b) Define $D(\omega) = 1$ for $|\omega| > \omega_c$, $D(\omega) = 0$ otherwise. What is its inverse DTFT, d[n]?
- (c) Use windowing to create h[n], a causal approximation to d[n]. Suppose that you are willing to tolerate a stopband ripple of -20dB, therefore you are able to use a rectangular window. You want the separation between passband and stopband to be 800Hz, i.e., you want a passband ripple to peak at f = 4400Hz, while the first stopband ripple peaks at f = 3600Hz. How many nonzero samples does h[n] need to have?
- (d) Same as part (c), but now you are only willing to tolerate a -50dB stopband ripple, so you will need to use a Hamming window.
- (e) For part (d), write an explicit formula that would allow you to compute the values of every sample h[n], in terms of n. There should be no variables other than n in your answer.

Problem 7.1.2

Suppose you have a signal, $x_c(t)$, that is sampled at $F_s = 16,000$ samples/second, creating a signal x[n]. You would like to implement a discrete time bandpass filter with a passband of $f_1 \le f \le f_2$, for $f_1 = 2000$ Hz, $f_2 = 6000$ Hz.

- (a) What are the discrete-time cutoff frequencies, ω_1 and ω_2 , in radians/sample?
- (b) Define $D(\omega) = 1$ for $\omega_1 < |\omega| < \omega_2$, $D(\omega) = 0$ otherwise. What is its inverse DTFT, d[n]?
- (c) Use windowing to create h[n], a causal approximation to d[n]. Suppose that you are willing to tolerate a stopband ripple of -20dB, therefore you are able to use a rectangular window. You want the separation between passband and stopband to be 800Hz, i.e., you want passband ripples that peak at f = 2400Hz and f = 5600Hz, and you want stopband ripples that peak at f = 1600Hz and f = 6400Hz. How many nonzero samples does h[n] need to have?

Homework 7

(d) Same as part (c), but now you are only willing to tolerate a -50dB stopband ripple, so you will need to use a Hamming window.

(e) For part (d), write an explicit formula that would allow you to compute the values of every sample h[n], in terms of n. There should be no variables other than n in your answer.

Problem 7.1.3

Suppose you have a signal, $x_c(t)$, that is sampled at $F_s = 16,000$ samples/second, creating a signal x[n]. You would like to implement a discrete time stopband filter with stopband of $f_1 < f < f_2$ for $f_1 = 2000$ Hz, $f_2 = 6000$ Hz.

- (a) What are the discrete-time cutoff frequencies, ω_1 and ω_2 , in radians/sample?
- (b) Define $D(\omega) = 0$ for $\omega_1 < |\omega| < \omega_2$, $D(\omega) = 1$ otherwise. What is its inverse DTFT, d[n]?
- (c) Use windowing to create h[n], a causal approximation to d[n]. Suppose that you are willing to tolerate a stopband ripple of -20dB, therefore you are able to use a rectangular window. You want the separation between passband and stopband to be 800Hz, i.e., you want passband ripples that peak at f = 1600Hz and f = 6400Hz, and you want stopband ripples that peak at f = 5600Hz. How many nonzero samples does h[n] need to have?
- (d) Same as part (c), but now you are only willing to tolerate a -50dB stopband ripple, so you will need to use a Hamming window.
- (e) For part (d), write an explicit formula that would allow you to compute the values of every sample h[n], in terms of n. There should be no variables other than n in your answer.