# UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN <br> Department of Electrical and Computer Engineering 

ECE 498MH Signal and Image Analysis

## Homework 5

Fall 2014

Assigned: Thursday, October 9, 2014
Due: Friday, October 16, 2014
Reading: Fundamentals of Signal Processing by Minh Do, Sections 1-3 and 1-4

## 1 Linearity and Time-Invariance

Do one of the following two problems.

## Problem 5.1.1

Consider the system

$$
y[n]=x[n]-x[0]
$$

(a) Determine whether or not the system is linear. If nonlinear, give an example of signals $x_{1}[n] \rightarrow y_{1}[n]$, $x_{2}[n] \rightarrow y_{2}[n]$, and $x_{3}[n] \rightarrow y_{3}[n]$ such that $x_{3}[n]=x_{1}[n]+x_{2}[n]$ but $y_{3}[n] \neq y_{1}[n]+y_{2}[n]$.
(b) Determine whether or not the system is time-invariant. If time-varying, give an example of signals $x_{1}[n] \rightarrow y_{1}[n]$ and $x_{2}[n] \rightarrow y_{2}[n]$ such that $x_{2}[n]=x_{1}[n-d]$ but $y_{2}[n] \neq y_{1}[n-d]$.

## Problem 5.1.2

Consider the system

$$
y[n]=x[n]-1
$$

(a) Determine whether or not the system is linear. If nonlinear, give an example of signals $x_{1}[n] \rightarrow y_{1}[n]$, $x_{2}[n] \rightarrow y_{2}[n]$, and $x_{3}[n] \rightarrow y_{3}[n]$ such that $x_{3}[n]=x_{1}[n]+x_{2}[n]$ but $y_{3}[n] \neq y_{1}[n]+y_{2}[n]$.
(b) Determine whether or not the system is time-invariant. If time-varying, give an example of signals $x_{1}[n] \rightarrow y_{1}[n]$ and $x_{2}[n] \rightarrow y_{2}[n]$ such that $x_{2}[n]=x_{1}[n-d]$ but $y_{2}[n] \neq y_{1}[n-d]$.

## 2 Convolution and Impulse Response

Do one of the following two problems.
Problem 5.2.1

Find the convolution $y[n]=\operatorname{conv}(x[n], h[n])$, for

$$
x[n]= \begin{cases}1 & 0 \leq n \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
h[n]= \begin{cases}1 & n=0 \\ 0.5 & n= \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

## Problem 5.2.2

Find $y[n]=x[n] * h[n]$, where

$$
\begin{aligned}
& h[n]= \begin{cases}1 & 0 \leq n \leq 3 \\
0 & \text { otherwise }\end{cases} \\
& x[n]= \begin{cases}1 & 0 \leq n \leq 7 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

## 3 Frequency Response

Do one of the following three problems.

## Problem 5.3.1

Consider the system

$$
y[n]=x[n]-0.5 y[n-1]
$$

The input to the system is $x[n]=\cos (\omega n)$ for some frequency $\omega$. Find the output of the system. You should express the output as as $y[n]=A \cos (\omega n+\theta)$, where $A$ and $\theta$ are terms that depend on $\omega$.

## Problem 5.3.2

Consider the system

$$
y[n]=x[n]+0.6 x[n-1]+0.4 y[n-1]
$$

The input to the system is $x[n]=\cos (\omega n)$ for some frequency $\omega$. Find the output of the system. You should express the output as as $y[n]=A \cos (\omega n+\theta)$, where $A$ and $\theta$ are terms that depend on $\omega$.

## Problem 5.3.3

Consider the system

$$
y[n]=0.5 x[n]+0.6 x[n-1]-0.3 y[n-1]
$$

The input to the system is $x[n]=\cos (\omega n)$ for some frequency $\omega$. Find the output of the system. You should express the output as as $y[n]=A \cos (\omega n+\theta)$, where $A$ and $\theta$ are terms that depend on $\omega$.

