UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering

ECE 498MH Signal and Image Analysis

Homework 2

Fall 2014

Assigned: Thursday, September 4, 2014
Due: Wednesday, September 10, 2014

Reading: Jason Starck, All About Circuits Chapter 7: Mixed-Frequency AC Signals, http://www.allaboutcircuits.com/vol_2/chpt_7/

1 Complex Numbers

Do one of the following three problems.

Problem 2.1.1

$$
x[n]=\cos \left(\frac{2 \pi n}{10}\right)+3 \sin \left(\frac{2 \pi n}{10}\right)
$$

(a) This signal can be written as

$$
x[n]=\frac{1}{2}\left(A e^{j \theta}+B e^{j \phi}\right) e^{j \omega n}+\frac{1}{2}\left(A e^{j \theta}+B e^{j \phi}\right)^{*} e^{-j \omega n}
$$

Find A, B, θ, ϕ, and ω (express them as integers, or as irreducible fractions. Don't use a calculator).
(b) This signal can be written

$$
x[n]=M \cos (\omega n+\psi)
$$

Find M and ψ. Do not use a calculator. Instead, write M in the form $M=\sqrt{N}$ for some integer N. Write ψ in the form of either $\psi=\operatorname{atan}(\alpha)$, or $\psi=-\operatorname{atan}(\alpha)$, or $\psi=\pi-\operatorname{atan}(\alpha)$, or $\psi=-\pi+\operatorname{atan}(\alpha)$, where α is an irreducible positive fraction (irreducible means that the numerator and denominator are integers with no common divisors; positive means that it is greater than zero).

Problem 2.1.2

$$
x[n]=5 \cos \left(\frac{2 \pi n}{15}\right)+2 \sin \left(\frac{2 \pi n}{15}\right)
$$

(a) This signal can be written as

$$
x[n]=\frac{1}{2}\left(A e^{j \theta}+B e^{j \phi}\right) e^{j \omega n}+\frac{1}{2}\left(A e^{j \theta}+B e^{j \phi}\right)^{*} e^{-j \omega n}
$$

Find A, B, θ, ϕ, and ω (express them as integers, or as irreducible fractions. Don't use a calculator).
(b) This signal can be written

$$
x[n]=M \cos (\omega n+\psi)
$$

Find M and ψ. Do not use a calculator. Instead, write M in the form $M=\sqrt{N}$ for some integer N. Write ψ in the form of either $\psi=\operatorname{atan}(\alpha)$, or $\psi=-\operatorname{atan}(\alpha)$, or $\psi=\pi-\operatorname{atan}(\alpha)$, or $\psi=-\pi+\operatorname{atan}(\alpha)$, where α is an irreducible positive fraction (irreducible means that the numerator and denominator are integers with no common divisors; positive means that it is greater than zero).

Problem 2.1.3

$$
x[n]=3 \cos \left(\frac{2 \pi n}{7}\right)+10 \sin \left(\frac{2 \pi n}{7}\right)
$$

(a) This signal can be written as

$$
x[n]=\frac{1}{2}\left(A e^{j \theta}+B e^{j \phi}\right) e^{j \omega n}+\frac{1}{2}\left(A e^{j \theta}+B e^{j \phi}\right)^{*} e^{-j \omega n}
$$

Find A, B, θ, ϕ, and ω (express them as integers, or as irreducible fractions. Don't use a calculator).
(b) This signal can be written

$$
x[n]=M \cos (\omega n+\psi)
$$

Find M and ψ. Do not use a calculator. Instead, write M in the form $M=\sqrt{N}$ for some integer N. Write ψ in the form of either $\psi=\operatorname{atan}(\alpha)$, or $\psi=-\operatorname{atan}(\alpha)$, or $\psi=\pi-\operatorname{atan}(\alpha)$, or $\psi=-\pi+\operatorname{atan}(\alpha)$, where α is an irreducible positive fraction (irreducible means that the numerator and denominator are integers with no common divisors; positive means that it is greater than zero).

2 Fourier Series

Do one of the following three problems.
Problem 2.2.1
Consider the signal

$$
x(t)=|\cos (2 \pi t)|
$$

(a) Sketch $x(t)$.
(b) What is its period, T_{0} ? What is its fundamental frequency, ω_{0} ?
(c) Find the Fourier series coefficients.

- Hint \#1: notice that $|\cos (2 \pi t)|$ is sometimes equal to $\cos (2 \pi t)$, and sometimes equal to $-\cos (2 \pi t)$, so if you choose the right period of time over which to integrate, you might be able to get rid of the absolute value signs.
- Hint $\# 2$: use the relationship $\cos (2 \pi t)=\frac{1}{2}\left(e^{j 2 \pi t}+e^{-j 2 \pi t}\right)$ so that you can integrate exponentials instead of integrating cosines.
- Hint \#3:

$$
\begin{aligned}
\int_{c}^{d}\left(e^{a t}+e^{b t}\right) d t & =\left[\frac{1}{a} e^{a t}+\frac{1}{b} e^{b t}\right]_{c}^{d} \\
& =\left(\frac{1}{a} e^{a d}+\frac{1}{b} e^{b d}\right)-\left(\frac{1}{a} e^{a c}+\frac{1}{b} e^{b c}\right)
\end{aligned}
$$

Problem 2.2.2

Consider the signal

$$
x(t)=1-|\sin (200 \pi t)|
$$

(a) Sketch $x(t)$.
(b) What is its period, T_{0} ? What is its fundamental frequency, ω_{0} ?
(c) Find the Fourier series coefficients.

- Hint \#1: notice that $|\sin (200 \pi t)|$ is sometimes equal to $\cos (2 \pi t)$, and sometimes equal to $-\sin (200 \pi t)$, so if you choose the right period of time over which to integrate, you might be able to get rid of the absolute value signs.
- Hint $\# 2$: use the relationship $\sin (200 \pi t)=\frac{1}{2 j}\left(e^{j 200 \pi t}-e^{-j 200 \pi t}\right)$ so that you can integrate exponentials instead of integrating cosines.
- Hint \#3:

$$
\begin{aligned}
\int_{c}^{d}\left(e^{a t}+e^{b t}\right) d t & =\left[\frac{1}{a} e^{a t}+\frac{1}{b} e^{b t}\right]_{c}^{d} \\
& =\left(\frac{1}{a} e^{a d}+\frac{1}{b} e^{b d}\right)-\left(\frac{1}{a} e^{a c}+\frac{1}{b} e^{b c}\right)
\end{aligned}
$$

Problem 2.2.3

Consider the signal

$$
x(t)= \begin{cases}1-e^{-100|t|} & -0.01 \leq t \leq 0.01 \\ x(t-0.02) & \text { otherwise }\end{cases}
$$

(a) Sketch $x(t)$.
(b) What is its period, T_{0} ? What is its fundamental frequency, ω_{0} ?
(c) Find the Fourier series coefficients.

- Hint \#1: for any time points $a \leq b \leq c$,

$$
\int_{a}^{c} x(t) d t=\int_{a}^{b} x(t) d t+\int_{b}^{c} x(t) d t
$$

- Hint $\# 2$: notice that $e^{-100|t|}$ is sometimes equal to $e^{-100 t}$, and sometimes equal to $e^{100 t}$, so if you divide the integral as shown in Hint $\# 1$, then you won't have to use the absolute value sign any more. (And notice that $\left.e^{-100 t} e^{j k \omega_{0} t}=e^{\left(-100+j k \omega_{0}\right) t}\right)$.
- Hint \#3:

$$
\begin{aligned}
\int_{c}^{d}\left(e^{a t}+e^{b t}\right) d t & =\left[\frac{1}{a} e^{a t}+\frac{1}{b} e^{b t}\right]_{c}^{d} \\
& =\left(\frac{1}{a} e^{a d}+\frac{1}{b} e^{b d}\right)-\left(\frac{1}{a} e^{a c}+\frac{1}{b} e^{b c}\right)
\end{aligned}
$$

