For exam 3, you need to know (1) Z transform of exponentials, relationship between Z transform, DTFT, and LCCDE, and the time-delay property of the Z transform (2) notch filters, (3) poles and zeros of the Z transform, stability, and the partial-fraction-expansion method of inverse Z transform.

2.1 Z transform

Problem:

Consider the following IIR filter:

$$
\begin{equation*}
y[n]=x[n]+\frac{1}{4} x[n-3]+\frac{1}{5} y[n-1] \tag{1}
\end{equation*}
$$

1. Calculate the impulse response of this system, $h[n]$.
2. Calculate $H(z)$ by applying the Z transform formula directly to $h[n]$.
3. Calculate $H(z)=Y(z) / X(z)$ by applying the shift property of the Z transform to Eq. 1 .
4. Use the relationship between Z-transform and DTFT to find the magnitude response, $|H(\omega)|$. Plot $|H(\omega)|$ as a function of ω, for $0 \leq \omega \leq \pi$. Label the amplitude at $\omega=0, \omega=\pi / 2$, and $\omega=\pi$. Notice that this one really isn't either a lowpass filter OR a highpass filter.

Solution:

1.

$$
h[n]=\left(\frac{1}{5}\right)^{n} u[n]+\frac{1}{4}\left(\frac{1}{5}\right)^{n-3} u[n-3]
$$

2.

$$
H(z)=\frac{1}{1-(1 / 5) z^{-1}}-\frac{(1 / 4) z^{-3}}{1-(1 / 5) z^{-1}}
$$

3.

$$
H(z)=\frac{1+(1 / 4) z^{-3}}{1-(1 / 5) z^{-1}}
$$

4.

$$
\begin{aligned}
& \left|H\left(e^{j \omega}\right)\right|=\left|\frac{1+(1 / 4) e^{-3 j \omega}}{1-(1 / 5) e^{-j \omega}}\right| \\
& \left|H\left(e^{j 0}\right)\right|=1.25 / 0.8,\left|H\left(e^{j \pi / 2}\right)\right|=|(1-(1 / 4) j) /(1-(1 / 5) j)|=\sqrt{1+(1 / 4)^{2}} / \sqrt{1+(1 / 5)^{2}}=\sqrt{425 / 416}, \\
& \left|H\left(e^{j \pi}\right)\right|=0.8 / 1.25 .
\end{aligned}
$$

2.2 Notch Filter

Problem:

Suppose you have a signal $x[n]=s[n]+v[n]$ corrupted by a narrowband noise, $v[n]$, at the frequency $\pi / 2$.

1. Find $H(z)$ for a notch filter, with a notch at $\pi / 2$, and a bandwidth of $B=|\ln (0.99)|$ radians $/$ sample.
2. Sketch the magnitude frequency response $|H(\omega)|$. Show the notch, show roughly the bandwidth of the notch, and show that it's $|H(\omega)| \approx 1$ at other frequencies.
3. Write the LCCDE that implements this filter.

Solution:

1.

$$
H(z)=\frac{1+z^{-2}}{1+(0.99)^{2} z^{-2}}
$$

2. $|H(\omega)| \approx 1$ for all frequencies, except that at $|H(\pi / 2)|=0$, and $|H(0.5 \pi+\ln (0.99))|=\mid H(0.5 \pi-$ $\ln (0.99)) \mid \approx 1 / \sqrt{2}$.
3.

$$
y[n]=x[n]+x[n-2]-(0.99)^{2} y[n-2]
$$

2.3 Stability; Partial Fraction Expansion

Problem:

The vowel /i/, as in "feet," is produced by raising your tongue up toward your hard palate. The resulting vocal tract shape has resonant frequencies of $\mathrm{F} 1=300, \mathrm{~F} 2=1800, \mathrm{~F} 3=2200$, $\mathrm{F} 4=3600 \mathrm{~Hz}$, with bandwidths of roughly $\mathrm{B} 1=100, \mathrm{~B} 2=150, \mathrm{~B} 3=250$, and $\mathrm{B} 4=300 \mathrm{~Hz}$, respectively.

1. Assume a sampling rate of $F_{s}=8000 \mathrm{~Hz}$. Express the four resonant frequencies, and their bandwidths, in units of radians/sample.
2. This transfer function can be written as

$$
H(z)=\frac{1}{\prod_{k=1}^{8}\left(1-p_{k} z^{-1}\right)}
$$

Give the eight pole locations, p_{1} through p_{8}. How do you know this filter is stable?
3. It is possible to implement this filter as

$$
H(z)=H_{1}(z) H_{2}(z) H_{3}(z) H_{4}(z)
$$

where each of the filters $H_{1}(z)$ through $H_{4}(z)$ is at most second-order, and each one has real-valued coefficients. What is $H_{1}(z)$?
4. Write an LCCDE that implements $H_{1}(z)$.
5. Find the impulse response $h_{1}[n]$ of $H_{1}(z)$.

Solution:

1. $\omega_{1}=\frac{3 \pi}{40}$, omega $a_{2}=\frac{18 \pi}{40}, \omega_{3}=\frac{22 \pi}{40}, \omega_{4}=\frac{36 \pi}{40}, \sigma_{1}=\frac{2 \pi}{80}, \sigma_{2}=\frac{3 \pi}{80}, \sigma_{3}=\frac{5 \pi}{80}, \sigma_{4}=\frac{6 \pi}{80}$.
2. $p_{1}=e^{-\sigma_{1}-j \omega_{1}}, p_{2}=e^{-\sigma_{1}+j \omega_{1}}, p_{3}=e^{-\sigma_{2}-j \omega_{2}}, p_{4}=e^{-\sigma_{2}+j \omega_{2}}, p_{5}=e^{-\sigma_{3}-j \omega_{3}}, p_{6}=e^{-\sigma_{3}+j \omega_{3}}, p_{7}=$ $e^{-\sigma_{4}-j \omega_{4}}, p_{8}=e^{-\sigma_{4}+j \omega_{4}}$. The filter is stable because all of the poles are inside the unit circle, $\left|p_{k}\right|<1$.
3.

$$
H_{1}(z)=\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{2} z^{-1}\right)}=\frac{1}{1-e^{-\pi / 40} \cos (3 \pi / 40) z^{-1}+e^{-2 \pi / 40} z^{-2}}
$$

4.

$$
y[n]=x[n]+e^{-\pi / 40} \cos (3 \pi / 40) y[n-1]-e^{-2 \pi / 40} y[n-2]
$$

5.

$$
H_{1}(z)=\frac{1}{\left(1-p_{2} / p_{1}\right)\left(1-p_{1} / z\right)}+\frac{1}{\left(1-p_{1} / p_{2}\right)\left(1-p_{2} / z\right)}
$$

So

$$
\begin{aligned}
& h_{1}[n]=\left(\frac{1}{1-p_{2} / p_{1}}\right)\left(p_{2}\right)^{n} u[n]\left(\frac{1}{1-p_{1} / p_{2}}\right)\left(p_{1}\right)^{n} u[n] \\
= & \left(\frac{1}{1-e^{j 6 \pi / 40}}\right) e^{j 3 n \pi / 40} u[n]\left(\frac{1}{1-e^{-j 6 \pi / 40}}\right) e^{-j 3 n \pi / 40} u[n]
\end{aligned}
$$

