For exam 2, you need to know (1) impulse response, (2) linearity and time invariance, (3) frequency response, (4) discrete-time processing of continuous-time periodic signals, (5) DTFT. In other words, you should be able to do the following problems.

2.1 Impulse Response

Problem:

A particular system computes the average of 5 samples, minus the average of the previous five:

$$
y[n]=\frac{1}{5} \sum_{m=0}^{4} x[n-m]-\frac{1}{5} \sum_{m=5}^{9} x[n-m]
$$

Find the impulse response $h[n]$.

Solution:

Feed $\delta[n]$ into the system, and the output is:

$$
h[n]= \begin{cases}\frac{1}{5} & 0 \leq n \leq 4 \\ -\frac{1}{5} & 5 \leq n \leq 9 \\ 0 & \text { otherwise }\end{cases}
$$

2.2 Linearity and Time Invariance

Problem:

A particular system changes the sign of every second input sample, thus

$$
y[n]=(-1)^{n} x[n]
$$

Is this system linear? It is time-invariant? Prove your answers.

Problem:

$$
\begin{aligned}
x_{1}[n] & \rightarrow(-1)^{n} x_{1}[n] \\
x_{2}[n] & \rightarrow(-1)^{n} x_{2}[n] \\
a x_{1}[n]+b x_{2}[n] & \rightarrow(-1)^{n}\left(a x_{1}[n]+b x_{2}[n]\right) \\
& =a y_{1}[n]+b y_{2}[n]
\end{aligned}
$$

So the system is linear.

$$
\begin{aligned}
x_{1}[n] & \rightarrow(-1)^{n} x_{1}[n] \\
y_{1}[n-m] & =(-1)^{n-m} x_{1}[n-m] \\
x_{1}[n-m] & \rightarrow(-1)^{n} x_{1}[n-m] \neq y_{1}[n-m]
\end{aligned}
$$

So the system is not time-invariant.

2.3 DT Processing of CT Signals

Problem:

A continuous-time periodic signal $x(t)$ with a period of $T_{0}=0.03$ seconds is passed through an ideal anti-aliasing filter $H_{a}(\Omega)$, then sampled at $F_{s}=1000 \mathrm{~Hz}$ to produce the discrete-time signal $x[n]$. The discrete-time signal $x[n]$ is then processed by the following system:

$$
y[n]=\frac{1}{10} \sum_{m=0}^{9} x[n-m]
$$

The signal $y[n]$ is then passed through an ideal D / A, at the same sampling frequency $F_{s}=1000 \mathrm{~Hz}$, to produce the signal $y(t)$. Let Y_{k} be the Fourier series coefficients of $y(t)$, and X_{k} those of $x(t)$.

1. Assume that $X_{k} \neq 0$ for all k; identify all k for which $Y_{k}=0$.
2. Specify $\left|Y_{k}\right|$ in terms of $\left|X_{k}\right|$ for all non-zero Y_{k}.

Solution:

The harmonic frequencies of both $x(t)$ and $y(t)$ are $k \Omega_{0}=2 \pi k / T_{0}=200 \pi / 3$ radians/second. The antialiasing filter eliminates all components $|\Omega| \geq \pi F_{s}=1000 \pi$, thus, all harmonics with $|k| \geq 15$. The other harmonics are mapped to $k \omega_{0}=k \Omega_{0} / F_{s}=2 \pi k / 30$. The discrete-time system has the frequency response

$$
H(\omega)=e^{-j \omega(10-1) / 2} \frac{\sin (\omega 10 / 2)}{10 \sin (\omega / 2)}
$$

which has zeros at $\omega_{\ell}=2 \pi \ell / 10$ for $\ell \neq 0$, thus every third harmonic of $x[n]$ is zeroed out. Thus

$$
\left|Y_{k}\right|= \begin{cases}0 & k=3 \ell, \quad \ell \neq 0 \\ 0 & |k| \geq 15 \\ \left|\frac{\sqrt{3}}{20 \sin (k \pi / 30)} X_{k}\right| & \text { otherwise }\end{cases}
$$

2.4 DTFT

Problem:

A particular bandpass filter has the frequency response

$$
F(\omega)= \begin{cases}1 & \frac{\pi}{10} \leq|\omega| \leq \frac{\pi}{4} \\ 0 & \text { otherwise }\end{cases}
$$

Find the impulse response $f[n]$.

Solution:

If your formula sheet has the form of an ideal lowpass filter on it, then the easiest way to solve this problem is to notice that

$$
F(\omega)=G(\omega)-H(\omega)
$$

where $G(\omega)$ is an ideal LPF with a cutoff of $\pi / 4$, and $H(\omega)$ is an ideal LPF with a cutoff of $\pi / 10$, thus

$$
f[n]=\frac{\sin (\pi n / 4)-\sin (\pi n / 10)}{\pi n}
$$

Alternatively, you could use the inverse DTFT formula directly:

$$
\begin{gathered}
f[n]=\frac{1}{2 \pi} \int_{-\pi / 4}^{-\pi / 10} e^{j \omega n} d \omega+\frac{1}{2 \pi} \int_{\pi / 10}^{\pi / 4} e^{j \omega n} d \omega \\
=\frac{1}{2 \pi j n}\left[e^{j \pi n / 4}-e^{j \pi n / 10}+e^{-j \pi n / 10}-e^{j \pi n / 4}\right]=\frac{\sin (\pi n / 4)-\sin (\pi n / 10)}{\pi n}
\end{gathered}
$$

