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Review: Poles and Zeros

A first-order autoregressive filter,
yln] = x[n] + bx[n — 1] + ay[n — 1],
has the impulse response and transfer function

14 bzt
h[n] = a"u[n] + ba" Yu[n — 1] ¢5 H(z) = %
— az

where a is called the pole of the filter, and —b is called its zero.
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Causality and Stability

e A filter is causal if and only if the output, y[n], depends only
an current and past values of the input,
x[n],x[n —1],x[n—2],....

o A filter is stable if and only if every finite-valued input
generates a finite-valued output. A causal first-order IIR filter
is stable if and only if |a| < 1.
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Review: Poles and Zeros

Suppose H(z) = %ﬁ:, and |a] < 1. Now let’s evaluate |H(w)|,

by evaluating |H(z)| at z = e/*:

e+ b|

|H(w)| m

What it means |H(w)| is the ratio of two vector lengths:
@ When the vector length |e/“ + b| is small, then |H(w)] is small.
o When |/ — 3| is small, then |H(w)| is LARGE.
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Review: Parallel Combination

Parallel combination of two systems looks like this:

Hl(Z)

x[n] ylnl

H2(Z)

Suppose that we know each of the systems separately:

1 1

Hi() = —~ Ho(2)= —

1(2) 1—pz7V 2(2) 1—ppzt
Then, to get H(z), we just have to add:

1 1 B 2 —(p1 + p2)z 1

H(z) = + =
(=) l—piz7t  1—poz7t 1 (p1+p2)z7t+ p1p2z—2
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© Impulse Response of a Second-Order Filter
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A General Second-Order All-Pole Filter

Let's construct a general second-order all-pole filter (leaving out
the zeros; they're easy to add later).

1 1

H(z) = =
(2) (L=pz )1 =piz7") 1=(pr+p)z '+ prpiz2

The difference equation that implements this filter is
Y(z) = X(z) + (p1 + P?[)Z*1 Y(z) - plpi“z’2 Y(2)
Which converts to

ylnl = x[n] + 2R(p1)y[n — 1] — |p1Py[n — 2]
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Partial Fraction Expansion

In order to find the impulse response, we do a partial fraction
expansion:

1 G C;

f{ = =
(=) Q—pz)1-piz D) 1-pz ' 1-pjz?

When we normalize the right-hand side of the equation above, we
get the following in the numerator:

1+0xz =G -pizHY+CGA-pzY)
and therefore

G = p1 .
p1— P
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Impulse Response of a Second-Order IIR

...and so we just inverse transform.
h[n] = Gipfuln] + G (p1)"uln]

x[m]=6[m]
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Understanding the Impulse Response of a Second-Order IIR

In order to understand the impulse response, maybe we should
invent some more variables. Let's say that
p1L = e~ o1tjw pi = e 01w
)
where o7 is the half-bandwidth of the pole, and w; is its center
frequency. The partial fraction expansion gave us the constant

P p1 e
1= T = - — = —
p1—p; e ot(er —e ) 2jsin(wr)

whose complex conjugate is

(?* e'_juﬂ
L™ 2jsin(wr)
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Impulse Response of a Second-Order IIR

Plugging in to the impulse response, we get

1 . . . .
_ w1 g(—o1tjwi)n _ g—jwi g(—o1—jwi)n
h[n] 2 sin(@n) (e’ e e /e ) uln]
1 . .
_ —o1n wi(n+1) _ —jwi(n+1)
Djsin(wn) (EJ ¢ > uln]
1

_ We*m” sin(w1(n + 1))u[n]
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Impulse Response of a Second-Order IIR
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Example: ldeal Resonator

As the first example, let's suppose we put p; right on the unit
circle, p; = &/“1.

2.0 4 jmag(z)
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Example: Resonator

The system function for this filter is

_Y() _ 1
~ X(z) 1—2cos(wy)z7l+z2

H(z)

Solving for y[n], we get the difference equation:

ylnl = x[n] + 2 cos(wi)y[n — 1] — y[n — 2]



Resonator
0O®000000

Example: ldeal Resonator

Just to make it concrete, let's choose w; = I, so the difference

equation is

us
4 1

ylnl = x[n] + vV2y[n — 1] — y[n - 2]

If we plug x[n] = 0[n] into this equation, we get

y[0] =1

y[1] = v2
yl=2-1=1
yBl=v2-v2=0
y[4]=-1

ylB] =-v2
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Example: ldeal Resonator

Putting p; = €1 into the general form, we find that the impulse
response of this filter is

h[n] =

1 .
sin(r) sin(wi(n+ 1))u[n]

This is called an “ideal resonator” because it keeps ringing forever.
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x[m]=6[m]

14
0
-1 4

y[m]l=h[m]*x[m]

14
0
-1 4

T
-10 0 10 20 30 40 50

m
(=)bM+]
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An ldeal Resonator is Unstable

A resonator is unstable. The easiest way to see what this means is
by looking at its frequency response:

1

H(w) = H(Z)l=e = (1 — ef1—)(1 — el(—w1—))

1
Al =G D ez ==

So if x[n] = cos(wyn), then y[n] is

y[n] = |H(w1)]| cos (win + ZH(w1)) = 00
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Pole-Zero Plot, p1 = exp(j2n/5) |H(w)|
6
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Instability from the POV of the Impulse Response

From the point of view of the impulse response, you can think of
instability like this:

ylnl = x{mlh[n — m]

Suppose x[m] = cos(wym)u[m]. Then
y[n] = x[0]h[n] + x[1]h[n — 1] + x[2]A[n — 2] + ...

We keep adding extra copies of h[n — m], for each m, forever.
Since h[n] never dies away, the result is that we keep building up
y[n] toward infinity.
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x[m]=6[m]

14
0
-1

y[m]=h[m]*x[m]
50
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Example: Stable Resonator

Now, let's suppose we put p; inside the unit circle, p; = e~ 71H/«1,

2.0 1 imag(z)
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Example: Stable Resonator

The system function for this filter is

Y(z) _ 1
X(z) 1—2e 91cos(wy)z !+ e 201272

H(z) =

Solving for y[n], we get the difference equation:

y[n] = x[n] + 2e7° cos(w1)y[n — 1] — e 7y[n — 2]
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Example: Stable Resonator

Just to make it concrete, let's choose w1y = Z, and e~ 7t = 0.9, so

the difference equation is

us
4 1

y[n] = x[n] 4+ 0.9v2y[n — 1] — 0.81y[n — 2]
If we plug x[n] = d[n] into this equation, we get

yl0]=1

y[1] = 0.9v2

y[2] = (0.9v2)? — 0.81 = 0.81

y[3] = (0.9v/2)(0.81) — (0.81)(0.9v2) = 0
y[4] = —(0.81)

y[5] = —(0.9v/2)(0.81)?
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Example: Stable Resonator

Putting p; = e~ 1“1 into the general form, we find that the
impulse response of this filter is

h[n] = e 7" sin(wi(n + 1))u[n]

sin(w1
This is called a “stable resonator” or a “stable sinusoid” or a
“damped resonator” or a “damped sinusoid.” It rings at the
frequency wi, but it gradually decays away.
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x[m]=6[m]

l_
0 A
_1_

y[m]l=h[m]*x[m]

14
0
_1_

T
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A Damped Resonator is Stable

A damped resonator is stable: any finite input will generate a finite
output.

1
(1 _ e—01+j(w1—w))(1 _ e—m—i—j(—wl—w))
1 11
(1—e)(1—en21) " 1—e 1 o

H(w) = H(2)| ;= =

H(w1) =

So if x[n] = cos(w1n), then y[n] is
y[n] = |H(w1)|cos (win + ZH(w1))

1
~ — cos (win + £LH(w1))
g1
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Pole-Zero Plot, p1 = exp(—0.1 + j2n/5) |H(w)|, max=1/0.1 = 10, bandwidth=0.2
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Stability from the POV of the Impulse Response

From the point of view of the impulse response, you can think of
stability like this:

yIn = 3" x{mhln — m]

Suppose x[m] = cos(wym)u[m]. Then
y[n] = x[0]h[n] + x[1]A[n — 1] + x[2)h[n — 2] + . ..

We keep adding extra copies of h[n — m], for each m, forever.
However, since each h[n — m] dies away, and since they are being
added with a time delay between them, the result never builds all
the way to infinity.
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x[m]=6[m]
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y[m]=h[m]*x[m]
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Magnitude Response of an All-Pole Filter

Until now, | have often used this trick, but have never really
discussed it with you:

1
L= p1z7 Y x |1 = ppz
k&

lz=pf x|z = pf
1

e = pi| x [e — po

[H(z)]

That's why the magnitude response is just one over the product of
the two vector lengths.
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Magnitude Response at w = w; €

Now let’s suppose p; = e~ 1%l and p, = pi = e~ o1jwr,
Consider what happens when w = w; =+ € for small values of e.
@ There are two poles, one at wi, one at —ws.

@ The pole at —w; is very far away from w =~ 4wj. In fact, over
the whole range w = wj =+ ¢, this distance remains
approximately constant:

& pi| = el _ i)
~ ‘ejwl _ e*f‘*’1|

= 2| sin(w1)|
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One pole remains very far away:

Pole-Zero Plot, p1 = exp(—0.1 + j2n/5) |H(w)|, max=1/0.1 = 10, bandwidth=0.2
6
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Magnitude Response at w = w; €

The other vector is the one that decides the shape of |H(w)|. We
could write it in a few different ways:
& — pa| = || x [1 = pye ]
=1x|1—pe¥|
=1x|[1— e—01+jwle—J'w’
=1x|[1— e—01+jwle—j(w1:|:6)|
=1 x |1 — e 1H¢

Let's use the approximation e* =~ 1 4 x, which is true for small
values of x. That gives us

| — p1| = | — o1 = je
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Magnitude Response at w = w; €

There are three frequencies that really matter:

@ Right at the pole, at w = wi, we have
& — p1| = o
@ At £ half a bandwidth, w = w1 + o1, we have

|/ — p1| = | — 01 F jo1| = 01V2
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Magnitude Response at w = w; €

There are three frequencies that really matter:

@ Right at the pole, at w = w1, we have

1
[H(en)] o

@ At =+ half a bandwidth, w = w1 + o1, we have

L | H(wn)

|H(w1 £ 01)| = ﬁ
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3dB Bandwidth

@ The 3dB bandwidth of an all-pole filter is the width of the
peak, measured at a level l/ﬂ relative to its peak.

@ o1 is half the bandwidth.
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The most important example of a damped resonator is speech.

@ Once every 5-10ms, your vocal folds close, abruptly shutting
off the airflow. This causes an instantaneous pressure impulse.

@ The impulse activates the impulse response of your vocal tract
(the area between the glottis and the lips).

@ Your vocal tract is a damped resonator.
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Speech is made up of Damped Sinusoids

Waveform of the vowel /o/
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Speech is made up of Damped Sinusoids

Your vocal tract has an infinite number of resonant frequencies, all
of which ring at once:

H (1 — pkz~ vz 1)

There are an infinite number, but most are VERY heavily damped,
so usually we only hear the first three or four.
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Center Fregs of First Two Poles Specify the Vowel

(Peterson & Barney, 1952)

Frequency of F, in Cycles per Second
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First Formant Resonator

When you look at a speech waveform, x[n], most of what you see
is the first resonance, called the “first formant.” Its resonant
frequency is roughly 400 < F; < 800 usually, so at Fs = 16000Hz
sampling frequency, we get

" *27TF1€[1 l]
17 TR 20’ 10

Its bandwidth might be about B; ~ 400Hz, so

1 /2nB; T
o1 == ~—
172\ R 40
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First Formant Frequency and Bandwidth in the Waveform

Waveform of the vowel /a/, F1 = 1000Hz

Waveform of the vowel /a/, w1 =n/8
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First Formant Frequency and Bandwidth in the Spectrum

Estimated 20/og10|H(w)| of the vowel /a/, F1 = 800Hz
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Impulse Response of a Second-Order All-Pole Filter

A general all-pole filter has the system function

1 1

H(z) = =
(2) (1=pz )1 —-piz") 1—=(p+pi)z " +ppiz—>

Its impulse response is

hin] = Cipiuln] + G (p1)"uln]
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Impulse Response of a Second-Order All-Pole Filter

We can take advantage of complex numbers to write these as

1
H =
(2) 1—2e%1cos(wy)z™1 + e 201272
and 1
h[n] = ————e 7" sin(wi(n + 1))u[n]

sin(wq
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Magnitude Response of a Second-Order All-Pole Filter

In the frequency response, there are three frequencies that really
matter:

@ Right at the pole, at w = wi, we have

1
[H(en)] o

@ At =+ half a bandwidth, w = w1 & o1, we have

|H(w1 £ 01)] = —=|H(w1)|

S
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