Lecture 23: Autoregressive Filters

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis

- Review: Z Transform
- 2 Autoregressive Difference Equations
- 3 Finite vs. Infinite Impulse Response
- Impulse Response and Transfer Function of a First-Order Autoregressive Filter
- Finding the Poles and Zeros of H(z)
- **6** Summary

Outline

- Review: Z Transform
- 2 Autoregressive Difference Equations
- 3 Finite vs. Infinite Impulse Response
- 4 Impulse Response and Transfer Function of a First-Order Autoregressive Filter
- Finding the Poles and Zeros of H(z)
- Summary

Summary: Z Transform

- A **difference equation** is an equation in terms of time-shifted copies of x[n] and/or y[n].
- We can find the frequency response $H(\omega) = Y(\omega)/X(\omega)$ by taking the DTFT of each term of the difference equation. This will result in a lot of terms of the form $e^{j\omega n_0}$ for various n_0 .
- We have less to write if we use a new frequency variable, $z=e^{j\omega}$. This leads us to the Z transform:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Zeros of the Transfer Function

- The transfer function, H(z), is a polynomial in z.
- The zeros of the transfer function are usually complex numbers, z_k .
- The frequency response, $H(\omega) = H(z)|_{z=e^{j\omega}}$, has a dip whenever ω equals the phase of any of the zeros, $\omega = \angle z_k$.

Outline

- Review: Z Transform
- 2 Autoregressive Difference Equations
- 3 Finite vs. Infinite Impulse Response
- 4 Impulse Response and Transfer Function of a First-Order Autoregressive Filter
- 5 Finding the Poles and Zeros of H(z)
- Summary

Autoregressive Difference Equations

An **autoregressive** filter is one in which the output, y[n], depends on past values of itself (**auto**=self, **regress**=go back). For example,

$$y[n] = x[n] + 0.3x[n-1] + 0.8y[n-1]$$

Causal and Anti-Causal Filters

 If the outputs of a filter depend only on current and past values of the input, then the filter is said to be causal. An example is

$$y[n] = x[n] + 0.3x[n-1] + 0.8y[n-1]$$

 If the outputs depend only on current and future values of the input, the filter is said to be anti-causal, for example

$$y[n] = x[n] + 0.3x[n+1] + 0.8y[n+1]$$

- If the filter is neither causal nor anti-causal, we say it's "non-causal."
- Feedforward non-causal filters are easy to analyze, but when analyzing feedback, we will stick to causal filters.

Autoregressive Difference Equations

We can find the transfer function by taking the Z transform of each term in the equation:

$$y[n] = x[n] + 0.3x[n-1] + 0.8y[n-1]$$

$$Y(z) = X(z) + 0.3z^{-1}X(z) + 0.8z^{-1}Y(z)$$

Transfer Function

In order to find the transfer function, we need to solve for $H(z) = \frac{Y(z)}{X(z)}$.

$$Y(z) = X(z) + 0.3z^{-1}X(z) + 0.8z^{-1}Y(z)$$
$$(1 - 0.8z^{-1}) Y(z) = X(z)(1 + 0.3z^{-1})$$
$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 + 0.3z^{-1}}{1 - 0.8z^{-1}}$$

Frequency Response

As before, we can get the frequency response by just plugging in $z=e^{j\omega}$. Some autoregressive filters are unstable, ¹ but if the filter is stable, then this works:

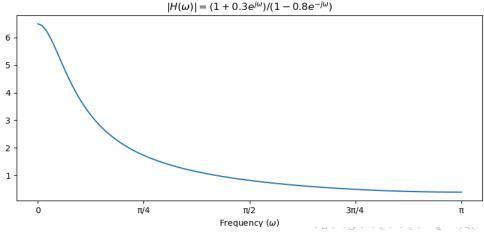
$$H(\omega) = H(z)|_{z=e^{j\omega}} = \frac{1 + 0.3e^{-j\omega}}{1 - 0.8e^{-j\omega}}$$

^{1 &}quot;Unstable" means that the output can be infinite, even with a finite input.

More about this later in the lecture.

Frequency Response

So, already we know how to compute the frequency response of an autoregressive filter. Here it is, plotted using np.abs((1+0.3*np.exp(-1j*omega))/(1-0.8*np.exp(-1j*omega)))



Outline

- Review: Z Transform
- 2 Autoregressive Difference Equations
- 3 Finite vs. Infinite Impulse Response
- 4 Impulse Response and Transfer Function of a First-Order Autoregressive Filter
- 5 Finding the Poles and Zeros of H(z)
- Summary

Impulse Response of an Autoregressive Filter

One way to find the **impulse response** of an autoregressive filter is the same as for any other filter: feed in an impulse, $x[n] = \delta[n]$, and what comes out is the impulse response, y[n] = h[n].

$$h[n] = \delta[n] + 0.3\delta[n-1] + 0.8h[n-1]$$

$$h[n] = 0, \quad n < 0$$

$$h[0] = \delta[0] = 1$$

$$h[1] = 0 + 0.3\delta[0] + 0.8h[0] = 1.1$$

$$h[2] = 0 + 0 + 0.8h[1] = 0.88$$

$$h[3] = 0 + 0 + 0.8h[2] = 0.704$$

$$\vdots$$

$$h[n] = 1.1(0.8)^{n-1} \quad \text{if } n \ge 1$$

$$\vdots$$

FIR vs. IIR Filters

- An autoregressive filter is also known as an infinite impulse response (IIR) filter, because h[n] is infinitely long (never ends).
- A difference equation with only feedforward terms (like we saw in the last lecture) is called a **finite impulse response** (FIR) filter, because h[n] has finite length.

General form of an FIR filter

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

This filter has an impulse response (h[n]) that is M+1 samples long.

• The b_k 's are called **feedforward** coefficients, because they feed x[n] forward into y[n].

General form of an IIR filter

$$\sum_{\ell=0}^{N} a_{\ell} y[n-\ell] = \sum_{k=0}^{M} b_{k} x[n-k]$$

• The a_{ℓ} 's are called **feedback** coefficients, because they feed y[n] back into itself.

General form of an IIR filter

$$\sum_{\ell=0}^{N} a_{\ell} y[n-\ell] = \sum_{k=0}^{M} b_{k} x[n-k]$$

Example:

$$y[n] = x[n] + 0.3x[n-1] + 0.8y[n-1]$$

 $b_0 = 1$
 $b_1 = 0.3$
 $a_0 = 1$
 $a_1 = -0.8$

Outline

- Review: Z Transform
- 2 Autoregressive Difference Equations
- 3 Finite vs. Infinite Impulse Response
- Impulse Response and Transfer Function of a First-Order Autoregressive Filter
- 5 Finding the Poles and Zeros of H(z)
- Summary

First-Order Feedback-Only Filter

Let's find the general form of h[n], for the simplest possible autoregressive filter: a filter with one feedback term, and no feedforward terms, like this:

$$y[n] = x[n] + ay[n-1],$$

where a is any constant (positive, negative, real, or complex).

Impulse Response of a First-Order Filter

We can find the impulse response by putting in $x[n] = \delta[n]$, and getting out y[n] = h[n]:

$$h[n] = \delta[n] + ah[n-1].$$

Recursive computation gives

$$h[0] = 1$$

$$h[1] = a$$

$$h[2] = a^{2}$$

$$\vdots$$

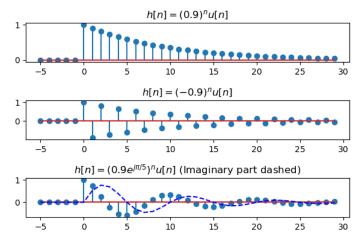
$$h[n] = a^{n}u[n]$$

where we use the notation u[n] to mean the "unit step function,"

$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

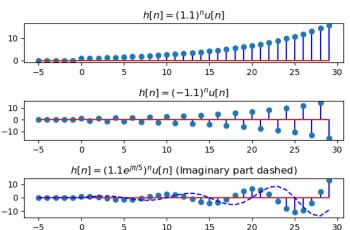
Impulse Response of Stable First-Order Filters

The coefficient, a, can be positive, negative, or even complex. If a is complex, then h[n] is also complex-valued.



Impulse Response of Unstable First-Order Filters

If |a|>1, then the impulse response grows exponentially. If |a|=1, then the impulse response never dies away. In either case, we say the filter is "unstable."



Instability

- A **stable** filter is one that always generates finite outputs (|y[n]| finite) for every possible finite input (|x[n]| finite).
- An **unstable** filter is one that, at least sometimes, generates infinite outputs, even if the input is finite.
- A first-order IIR filter is stable if and only if |a| < 1.

Transfer Function of a First-Order Filter

We can find the transfer function by taking the Z-transform of each term in this equation equation:

$$y[n] = x[n] + ay[n-1],$$

 $Y(z) = X(z) + az^{-1}Y(z),$

which we can solve to get

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - az^{-1}}$$

Frequency Response of a First-Order Filter

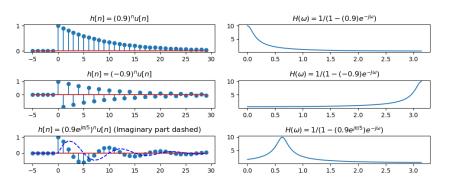
If the filter is stable (|a| < 1), then we can find the frequency response by plugging in $z = e^{j\omega}$:

$$H(\omega)=H(z)|_{z=e^{j\omega}}=rac{1}{1-ae^{-j\omega}}\quad ext{iff } |a|<1$$

This formula works if and only if |a| < 1.

Frequency Response of a First-Order Filter

$$H(\omega) = \frac{1}{1 - ae^{-j\omega}}$$
 if $|a| < 1$



Transfer Function \leftrightarrow Impulse Response

For FIR filters, we say that $h[n] \leftrightarrow H(z)$ are a Z-transform pair. Let's assume that the same thing is true for IIR filters, and see if it works.

$$H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}$$
$$= \sum_{n=0}^{\infty} a^n z^{-n}$$

This is a standard geometric series, with a ratio of az^{-1} . As long as |a| < 1, we can use the formula for an infinite-length geometric series, which is:

$$H(z) = \frac{1}{1 - az^{-1}},$$

So we confirm that $h[n] \leftrightarrow H(z)$ for both FIR and IIR filters, as long as |a| < 1.

Outline

- Review: Z Transform
- 2 Autoregressive Difference Equations
- 3 Finite vs. Infinite Impulse Response
- 4 Impulse Response and Transfer Function of a First-Order Autoregressive Filter
- Finding the Poles and Zeros of H(z)
- Summary

First-Order Filter

Now, let's find the transfer function of a general first-order filter, including BOTH feedforward and feedback delays:

$$y[n] = x[n] + bx[n-1] + ay[n-1],$$

where we'll assume that |a| < 1, so the filter is stable.

Transfer Function of a First-Order Filter

We can find the transfer function by taking the Z-transform of each term in this equation:

$$y[n] = x[n] + bx[n-1] + ay[n-1],$$

 $Y(z) = X(z) + bz^{-1}X(z) + az^{-1}Y(z),$

which we can solve to get

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 + bz^{-1}}{1 - az^{-1}}.$$

Treating H(z) as a Ratio of Two Polynomials

Notice that H(z) is the ratio of two polynomials:

$$H(z) = \frac{1 + bz^{-1}}{1 - az^{-1}} = \frac{z + b}{z - a}$$

- z = -b is called the **zero** of H(z), meaning that H(-b) = 0.
- z = a is called the **pole** of H(z), meaning that $H(a) = \infty$

The Pole and Zero of H(z)

- The pole, z=a, and zero, z=-b, are the values of z for which $H(z)=\infty$ and H(z)=0, respectively.
- But what does that mean? We know that for $z=e^{j\omega}$, H(z) is just the frequency response:

$$H(\omega) = H(z)|_{z=e^{j\omega}}$$

but the pole and zero do not normally have unit magnitude.

- What it means is that:
 - When $\omega = \angle(-b)$, then $|H(\omega)|$ is as close to a zero as it can possibly get, so at that that frequency, $|H(\omega)|$ is as low as it can get.
 - When $\omega = \angle a$, then $|H(\omega)|$ is as close to a pole as it can possibly get, so at that that frequency, $|H(\omega)|$ is as high as it can get.

Vectors in the Complex Plane

Suppose we write |H(z)| like this:

$$|H(z)| = \frac{|z+b|}{|z-a|}$$

Now let's evaluate at $z = e^{j\omega}$:

$$|H(\omega)| = \frac{|e^{j\omega} + b|}{|e^{j\omega} - a|}$$

What we've discovered is that $|H(\omega)|$ is small when the vector distance $|e^{j\omega}+b|$ is small, but LARGE when the vector distance $|e^{j\omega}-a|$ is small.

Why This is Useful

Now we have another way of thinking about frequency response.

- Instead of just LPF, HPF, or BPF, we can design a filter to have zeros at particular frequencies, $\angle(-b)$, AND to have poles at particular frequencies, $\angle a$,
- The magnitude $|H(\omega)|$ is $|e^{j\omega} + b|/|e^{j\omega} a|$.
- Using this trick, we can design filters that have much more subtle frequency responses than just an ideal LPF, BPF, or HPF.

Outline

- Review: Z Transform
- 2 Autoregressive Difference Equations
- 3 Finite vs. Infinite Impulse Response
- 4 Impulse Response and Transfer Function of a First-Order Autoregressive Filter
- 5 Finding the Poles and Zeros of H(z)
- **6** Summary

Summary: Autoregressive Filter

- An autoregressive filter is a filter whose current output, y[n], depends on past values of the output.
- An autoregressive filter is also called **infinite impulse** response (IIR), because h[n] has infinite length.
- A filter with only feedforward coefficients, and no feedback coefficients, is called **finite impulse response (FIR)**, because h[n] has finite length (its length is just the number of feedforward terms in the difference equation).
- The first-order, feedback-only autoregressive filter has this impulse response and transfer function:

$$h[n] = a^n u[n] \leftrightarrow H(z) = \frac{1}{1 - az^{-1}}$$

Summary: Poles and Zeros

A first-order autoregressive filter,

$$y[n] = x[n] + bx[n-1] + ay[n-1],$$

has the impulse response and transfer function

$$h[n] = a^n u[n] + ba^{n-1} u[n-1] \leftrightarrow H(z) = \frac{1 + bz^{-1}}{1 - az^{-1}},$$

where a is called the **pole** of the filter, and -b is called its **zero**.