DTFT	Ideal LPF	Ideal HPF	Ideal BPF	Summary	Example

Lecture 16: Ideal Filters

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

DTFT	Ideal LPF	Ideal HPF	Ideal BPF	Summary	Example

- 2 Ideal Lowpass Filter
- 3 Ideal Highpass Filter
- 4 Ideal Bandpass Filter
- 5 Summary

DTFT	ldeal LPF	ldeal HPF	Ideal BPF	Summary	Example
●○○	00000000	00000000000	00000	00	00
Outline					

- 1 Review: DTFT
- 2 Ideal Lowpass Filter
- 3 Ideal Highpass Filter
- Ideal Bandpass Filter
- **5** Summary
- 6 Written Example

The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

Particular useful examples include:

$$f[n] = \delta[n] \leftrightarrow F(\omega) = 1$$
$$g[n] = \delta[n - n_0] \leftrightarrow G(\omega) = e^{-j\omega n_0}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

DTFT Ideal LPF Ideal HPF Ideal BPF Summary Example Oco Ocoocococo Ocoocococo Ocoocococo Ocoocococo Ocoocococo Properties of the DTFT Ideal HPF Ideal HPF Ideal HPF Ideal HPF Ocoococococo

Properties worth knowing include:

• Periodicity: $X(\omega + 2\pi) = X(\omega)$

Linearity:

$$z[n] = ax[n] + by[n] \leftrightarrow Z(\omega) = aX(\omega) + bY(\omega)$$

- 2 Time Shift: $x[n n_0] \leftrightarrow e^{-j\omega n_0} X(\omega)$
- Solution Frequency Shift: $e^{j\omega_0 n} x[n] \leftrightarrow X(\omega \omega_0)$
- Iltering is Convolution:

$$y[n] = h[n] * x[n] \leftrightarrow Y(\omega) = H(\omega)X(\omega)$$

DTFT	ldeal LPF	ldeal HPF	Ideal BPF	Summary	Example
000	●○○○○○○○	೦೦೦೦೦೦೦೦೦೦	00000	00	00
Outline					

- 2 Ideal Lowpass Filter
- Ideal Highpass Filter
- 4 Ideal Bandpass Filter
- **5** Summary
- 6 Written Example

DTFT	Ideal LPF	Ideal HPF	Ideal BPF	Summary	Example
000	○●000000	0000000000	00000	00	00
What is	"Ideal"?				

The definition of "ideal" depends on your application. Let's start with the task of lowpass filtering. Let's define an ideal lowpass filter, $Y(\omega) = H_{LP}(\omega)X(\omega)$, as follows:

$$Y(\omega) = egin{cases} X(\omega) & |\omega| \leq \omega_c, \ 0 & ext{otherwise}, \end{cases}$$

where ω_c is some cutoff frequency that we choose. For example, to de-noise a speech signal we might choose $\omega_c = 2\pi 2400/F_s$, because most speech energy is below 2400Hz. This definition gives:

$$H_{LP}(\omega) = egin{cases} 1 & |\omega| \leq \omega_c \ 0 & ext{otherwise} \end{cases}$$

DTFT	ldeal LPF	ldeal HPF	Ideal BPF	Summary	Example
000	⊙o●ooooo	00000000000	00000	00	00
Ideal L	owpass Filt	er			

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

- Use np.fft.fft to find X[k], set Y[k] = X[k] only for $\frac{2\pi k}{N} < \omega_c$, then use np.fft.ifft to convert back into the time domain?
 - It sounds easy, but...
 - np.fft.fft is finite length, whereas the DTFT is infinite length. Truncation to finite length causes artifacts.
- Solution Use pencil and paper to inverse DTFT $H_{LP}(\omega)$ to $h_{LP}[n]$, then use np.convolve to convolve $h_{LP}[n]$ with x[n].
 - It sounds more difficult.
 - But actually, we only need to find $h_{LP}[n]$ once, and then we'll be able to use the same formula for ever afterward.
 - This method turns out to be both easier and more effective in practice.

The ideal LPF is

$$egin{aligned} \mathcal{H}_{LP}(\omega) &= egin{cases} 1 & |\omega| \leq \omega_c \ 0 & ext{otherwise} \end{aligned}$$

The inverse DTFT is

$$h_{LP}[n] = rac{1}{2\pi} \int_{-\pi}^{\pi} H_{LP}(\omega) e^{j\omega n} d\omega$$

Combining those two equations gives

$$h_{LP}[n] = rac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

DTFT	ldeal LPF	Ideal HPF	Ideal BPF	Summary	Example
000	○0000€00	00000000000	00000	00	00
Solving	the integral				

The ideal LPF is

$$h_{LP}[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$

= $\frac{1}{2\pi} \left(\frac{1}{jn}\right) \left[e^{j\omega n}\right]_{-\omega_c}^{\omega_c}$
= $\frac{1}{2\pi} \left(\frac{1}{jn}\right) (2j\sin(\omega_c n))$
= $\frac{\sin(\omega_c n)}{\pi n}$
= $\left(\frac{\omega_c}{\pi}\right) \operatorname{sinc}(\omega_c n)$

DTFT	ldeal LPF	ldeal HPF	Ideal BPF	Summary	Example
000	○○○○○○●○	0000000000	00000	00	00
$h_{LP}[n] =$	$\frac{\sin(\omega_c n)}{\pi n}$				

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $\frac{\sin(\omega_c n)}{\pi n}$ is undefined when n = 0
- $\lim_{n\to 0} \frac{\sin(\omega_c n)}{\pi n} = \frac{\omega_c}{\pi}$
- So let's define $h_{LP}[0] = \frac{\omega_c}{\pi}$.

DTFT	ldeal LPF	ldeal HPF	Ideal BPF	Summary	Example
000	○○○○○○○●	00000000000	00000	00	00
$h_{LP}[n] =$	$= \frac{\omega_c}{\pi} \operatorname{sinc}(\omega_c)$	n)			

DTFT	ldeal LPF	Ideal HPF	Ideal BPF	Summary	Example
000	00000000	●○○○○○○○○○	00000	00	00
Outline					

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- 1 Review: DTFT
- 2 Ideal Lowpass Filter
- 3 Ideal Highpass Filter
- Ideal Bandpass Filter
- **5** Summary
- 6 Written Example

DTFT	Ideal LPF	Ideal HPF	Ideal BPF	Summary	Example
		000000000			

Ideal Highpass Filter

Ideal Highpass Filter

An ideal high-pass filter passes all frequencies above ω_c :

$$H_{HP}(\omega) = egin{cases} 1 & |\omega| > \omega_c \ 0 & ext{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

... except for one problem: aliasing.

The highest frequency, in discrete time, is $\omega = \pi$. Frequencies that seem higher, like $\omega = 1.1\pi$, are actually lower. This phenomenon is called "aliasing."

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Here's how an ideal HPF looks if we only plot from $-\pi \leq \omega \leq \pi$:

Here's how an ideal HPF looks if we plot from $-2\pi \leq \omega \leq 2\pi$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○へ⊙

Here's how an ideal HPF looks if we plot from $-3\pi \le \omega \le 3\pi$:

Let's redefine "lowpass" and "highpass." The ideal LPF is

$$egin{aligned} \mathcal{H}_{LP}(\omega) &= egin{cases} 1 & |\omega| \leq \omega_{m{c}}, \ 0 & \omega_{m{c}} < |\omega| \leq \pi. \end{aligned}$$

The ideal HPF is

$$H_{HP}(\omega) = egin{cases} 0 & |\omega| < \omega_c, \ 1 & \omega_c \leq |\omega| \leq \pi. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Both of them are periodic with period 2π .

The easiest way to find $h_{HP}[n]$ is to use linearity:

$$H_{HP}(\omega) = 1 - H_{LP}(\omega)$$

Therefore:

$$h_{HP}[n] = \delta[n] - h_{LP}[n]$$
$$= \delta[n] - \frac{\omega_c}{\pi} \operatorname{sinc}(\omega_c n)$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

000	0000000	00000000000	00000	00	00
DTFT	Ideal LPF	Ideal HPF	Ideal BPF	Summary	Example

Comparing highpass and lowpass filters

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

DTFT	ldeal LPF	Ideal HPF	Ideal BPF	Summary	Example
000	00000000	0000000000	●○○○○	00	00
Outline					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1 Review: DTFT
- 2 Ideal Lowpass Filter
- 3 Ideal Highpass Filter
- Ideal Bandpass Filter
- **5** Summary
- 6 Written Example

DTFT	Ideal LPF	Ideal HPF	Ideal BPF	Summary	Example
			0000		

Ideal Bandpass Filter

An ideal band-pass filter passes all frequencies between ω_1 and ω_2 :

$$\mathcal{H}_{BP}(\omega) = egin{cases} 1 & \omega_1 \leq |\omega| \leq \omega_2 \ 0 & ext{otherwise} \end{cases}$$

(and, of course, it's also periodic with period 2π).

Ideal Bandpass Filter

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The easiest way to find $h_{BP}[n]$ is to use linearity:

$$H_{BP}(\omega) = H_{LP,\omega_2}(\omega) - H_{LP,\omega_1}(\omega)$$

Therefore:

$$h_{BP}[n] = \frac{\omega_2}{\pi} \operatorname{sinc}(\omega_2 n) - \frac{\omega_1}{\pi} \operatorname{sinc}(\omega_1 n)$$

DTFT	ldeal LPF	Ideal HPF	Ideal BPF	Summary	Example
000	00000000	00000000000	00000	●○	00
Outline					

- 1 Review: DTFT
- 2 Ideal Lowpass Filter
- 3 Ideal Highpass Filter
- Ideal Bandpass Filter

5 Summary

6 Written Example

DTFT	Ideal LPF	Ideal HPF	Ideal BPF	Summary	Example
000	00000000	00000000000	00000	○●	00
Summar	y: Ideal Fil	ters			

• Ideal Lowpass Filter:

$$H_{LP}(\omega) = \begin{cases} 1 & |\omega| \le \omega_c, \\ 0 & \omega_c < |\omega| \le \pi. \end{cases} \quad \leftrightarrow \quad h_{LP}[m] = \frac{\omega_c}{\pi} \operatorname{sinc}(\omega_c n)$$

• Ideal Highpass Filter:

 $H_{HP}(\omega) = 1 - H_{LP}(\omega) \quad \leftrightarrow \quad h_{HP}[n] = \delta[n] - \frac{\omega_c}{\pi} \operatorname{sinc}(\omega_c n)$

• Ideal Bandpass Filter:

$$H_{BP}(\omega) = H_{LP,\omega_2}(\omega) - H_{LP,\omega_1}(\omega)$$

$$\leftrightarrow h_{BP}[n] = \frac{\omega_2}{\pi} \operatorname{sinc}(\omega_2 n) - \frac{\omega_1}{\pi} \operatorname{sinc}(\omega_1 n)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

DTFT	Ideal LPF	ldeal HPF	Ideal BPF	Summary	Example
000	00000000	00000000000	00000	00	●○
Outline					

- 1 Review: DTFT
- 2 Ideal Lowpass Filter
- 3 Ideal Highpass Filter
- Ideal Bandpass Filter
- 5 Summary
- 6 Written Example

DTFT	Ideal LPF	ldeal HPF	Ideal BPF	Summary	Example
000	00000000	0000000000	00000	00	○●
Written	Example				

Suppose you have an image with a sharp boundary, between black and white, at the location n = 0. This is well modeled by setting x[n] equal to the unit step function:

$$x[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Use graphical convolution to convolve x[n] with an ideal LPF. You don't need to find the exact values of y[n], but sketch things like: how wide is the ramp between light and dark? How frequent are the ripples on either side of the ramp?

(日)(1)</