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Response of LSI System to Periodic Inputs

Suppose we compute y [n] = x [n] ∗ h[n], where

x [n] =
1

N

N−1∑
k=0

X [k]e j2πkn/N , and

y [n] =
1

N

N−1∑
k=0

Y [k]e j2πkn/N .

The relationship between Y [k] and X [k] is given by the frequency
response:

Y [k] = H(kω0)X [k]

where

H(ω) =
∞∑

n=−∞
h[n]e−jωn
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Response of LSI System to Aperiodic Inputs

But what about signals that never repeat themselves?
Can we still write something like

Y (ω) = H(ω)X (ω)?
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Aperiodic

An “aperiodic signal” is a signal that is not periodic.

Music: strings, woodwinds, and brass are periodic, drums and
rain sticks are aperiodic.

Speech: vowels and nasals are periodic, plosives and fricatives
are aperiodic.

Images: stripes are periodic, clouds are aperiodic.

Bioelectricity: heartbeat is periodic, muscle contractions are
aperiodic.
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Periodic

The spectrum of a periodic signal is given by its Fourier series. In
discrete time, that’s:

Xk =
1

N0

N0−1
2∑

n=−N0
2

x [n]e
−j 2πkn

N0

=
1

N0

N0−1
2∑

n=−N0
2

x [n]e−jωn

and that gives the frequency content of the signal, at the
frequency ω = 2πk

N0
.

Here I’m using n ∈
{
−N0

2 , . . . ,
N0−1

2

}
, but the sum could be over

any sequence of N0 continuous samples.
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Aperiodic

An aperiodic signal is one that never repeats itself. So we want
something like the limit, as N0 →∞, of the Fourier series. Here is
the simplest such thing that is useful:

Discrete-Time Fourier Transform (DTFT)

X (ω) =
∞∑

n=−∞
x [n]e−jωn
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Fourier Series vs. Fourier Transform

The Fourier Series coefficients are:

Xk =
1

N0

N0−1
2∑

n=−N0
2

x [n]e−jωn

The Fourier transform is:

X (ω) =
∞∑

n=−∞
x [n]e−jωn

Notice that, besides taking the limit as N0 →∞, we also got rid of
the 1

N0
factor. So we can think of the DTFT as

X (ω) = lim
N0→∞,ω= 2πk

N0

N0Xk

where the limit is: as N0 →∞, and k →∞, but ω = 2πk
N0

remains
constant.
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Inverse DTFT

In order to convert X (ω) back to x [n], we’ll take advantage of
orthogonality:∫ π

−π
e jω(m−n)dω =

{
2π m = n

0 (m − n) = any nonzero integer
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Inverse DTFT

Taking advantage of orthogonality, we can see that

1

2π

∫ π

−π
X (ω)e jωmdω

=
1

2π

∫ π

−π

( ∞∑
n=−∞

x [n]e−jωn

)
e jωmdω

=
1

2π

∞∑
n=−∞

x [n]

∫ π

−π
e jω(m−n)dω

= x [m]
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Fourier Series and Fourier Transform

Discrete-Time Fourier Series (DTFS):

Xk =
1

N0

N0−1∑
n=0

x [n]e
−j 2πkn

N0

x [n] =

N0−1∑
k=0

Xke
j 2πkn

N0

Discrete-Time Fourier Transform (DTFT):

X (ω) =
∞∑

n=−∞
x [n]e−jωn

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω
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Properties of the DTFT

In order to better understand the DTFT, let’s discuss these
properties:

0 Periodicity

1 Linearity

2 Time Shift

3 Frequency Shift

4 Filtering is Convolution

Property #4 is actually the reason why we invented the DTFT in
the first place. Before we discuss it, though, let’s talk about the
others.
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0. Periodicity

The DTFT is periodic with a period of 2π. That’s just because
e j2π = 1:

X (ω) =
∑
n

x [n]e−jωn

X (ω + 2π) =
∑
n

x [n]e−j(ω+2π)n =
∑
n

x [n]e−jωn = X (ω)

X (ω − 2π) =
∑
n

x [n]e−j(ω−2π)n =
∑
n

x [n]e−jωn = X (ω)

For example, the inverse DTFT can be defined in two different
ways:

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω =

1

2π

∫ 2π

0
X (ω)e jωndω

Those two integrals are equal because X (ω + 2π) = X (ω).
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1. Linearity

The DTFT is linear:

z [n] = ax [n] + by [n] ↔ Z (ω) = aX (ω) + bY (ω)

Proof:

Z (ω) =
∑
n

z [n]e−jωn

= a
∑
n

x [n]e−jωn + b
∑
n

y [n]e−jωn

= aX (ω) + bY (ω)
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2. Time Shift Property

Shifting in time is the same as multiplying by a complex
exponential in frequency:

z [n] = x [n − n0] ↔ Z (ω) = e−jωn0X (ω)

Proof:

Z (ω) =
∞∑

n=−∞
x [n − n0]e−jωn

=
∞∑

m=−∞
x [m]e−jω(m+n0) (where m = n − n0)

= e−jωn0X (ω)
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3. Frequency Shift Property

Shifting in frequency is the same as multiplying by a complex
exponential in time:

z [n] = x [n]e jω0n ↔ Z (ω) = X (ω − ω0)

Proof:

Z (ω) =
∞∑

n=−∞
x [n]e jω0ne−jωn

=
∞∑

n=−∞
x [n]e−j(ω−ω0)n

= X (ω − ω0)
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4. Convolution Property

Convolving in time is the same as multiplying in frequency:

y [n] = h[n] ∗ x [n] ↔ Y (ω) = H(ω)X (ω)

Proof: Remember that y [n] = h[n] ∗ x [n] means that
y [n] =

∑∞
m=−∞ h[m]x [n −m]. Therefore,

Y (ω) =
∞∑

n=−∞

( ∞∑
m=−∞

h[m]x [n −m]

)
e−jωn

=
∞∑

m=−∞

∞∑
n=−∞

(h[m]x [n −m]) e−jωme−jω(n−m)

=

( ∞∑
m=−∞

h[m]e−jωm

) ∞∑
(n−m)=−∞

x [n −m]e−jω(n−m)


= H(ω)X (ω)



Review DTFT DTFT Properties Examples Summary Example

Outline

1 Review: Frequency Response

2 Discrete Time Fourier Transform

3 Properties of the DTFT

4 Examples

5 Summary

6 Written Example



Review DTFT DTFT Properties Examples Summary Example

Impulse and Delayed Impulse

For our examples today, let’s consider different combinations of
these three signals:

f [n] = δ[n]

g [n] = δ[n − 3]

h[n] = δ[n − 6]

Remember from last time what these mean:

f [n] =

{
1 n = 0

0 otherwise

g [n] =

{
1 n = 3

0 otherwise

h[n] =

{
1 n = 6

0 otherwise
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DTFT of an Impulse

First, let’s find the DTFT of an impulse:

f [n] =

{
1 n = 0

0 otherwise

F (ω) =
∞∑

n=−∞
f [n]e−jωn

= 1× e−jω0

= 1

So we get that f [n] = δ[n]↔ F (ω) = 1. That seems like it might
be important.
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DTFT of a Delayed Impulse

Second, let’s find the DTFT of a delayed impulse:

g [n] =

{
1 n = 3

0 otherwise

G (ω) =
∞∑

n=−∞
g [n]e−jωn

= 1× e−jω3

So we get that

g [n] = δ[n − 3]↔ G (ω) = e−j3ω

Similarly, we could show that

h[n] = δ[n − 6]↔ H(ω) = e−j6ω
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Impulse and Delayed Impulse

So our signals are:

f [n] = δ[n]↔ F (ω) = 1

g [n] = δ[n − 3]↔ G (ω) = e−3jω

h[n] = δ[n − 6]↔ H(ω) = e−6jω
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Time Shift Property

Notice that

g [n] = f [n − 3]

h[n] = g [n − 3].

From the time-shift property of the DTFT, we can get that

G (ω) = e−j3ωF (ω)

H(ω) = e−j3ωG (ω).

Plugging in F (ω) = 1, we get

G (ω) = e−j3ω

H(ω) = e−j6ω,

which we already know to be the right answer!
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Convolution Property and the Impulse

Notice that, if F (ω) = 1, then anything times F (ω) gives itself
again. In particular,

G (ω) = G (ω)F (ω)

H(ω) = H(ω)F (ω)

Since multiplication in frequency is the same as convolution in
time, that must mean that when you convolve any signal with an
impulse, you get the same signal back again:

g [n] = g [n] ∗ δ[n]

h[n] = h[n] ∗ δ[n]
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Convolution Property and the Impulse
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Convolution Property and the Delayed Impulse

Here’s another interesting thing. Notice that G (ω) = e−j3ω, but
H(ω) = e−j6ω. So

H(ω) = e−j3ωe−j3ω

= G (ω)G (ω)

Does that mean that:

δ[n − 6] = δ[n − 3] ∗ δ[n − 3]
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Convolution Property and the Delayed Impulse
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Summary

The DTFT (discrete time Fourier transform) of any signal is X (ω),
given by

X (ω) =
∞∑

n=−∞
x [n]e−jωn

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω

Particular useful examples include:

f [n] = δ[n]↔ F (ω) = 1

g [n] = δ[n − n0]↔ G (ω) = e−jωn0
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Properties of the DTFT

Properties worth knowing include:

0 Periodicity: X (ω + 2π) = X (ω)

1 Linearity:

z [n] = ax [n] + by [n]↔ Z (ω) = aX (ω) + bY (ω)

2 Time Shift: x [n − n0]↔ e−jωn0X (ω)

3 Frequency Shift: e jω0nx [n]↔ X (ω − ω0)

4 Filtering is Convolution:

y [n] = h[n] ∗ x [n]↔ Y (ω) = H(ω)X (ω)
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Written Example

Suppose that h[n] and x [n] are identical rectangle functions:

x [n] = h[n] =

{
1 −5 ≤ n ≤ 5

0 otherwise

1 Find y [n] = h[n] ∗ x [n] by calculating the convolution.

2 Find H(ω).

3 Find Y (ω) = H(ω)X (ω)
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