Lecture 8: Sampling Theorem

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

ECE 401: Signal and Image Analysis, Fall 2021
1. Review: Sampling
2. Spectrum Plots
3. Spectrum of Oversampled Signals
4. Spectrum of Undersampled Signals
5. The Sampling Theorem
6. Summary
7. Written Example
Outline

1. Review: Sampling
2. Spectrum Plots
3. Spectrum of Oversampled Signals
4. Spectrum of Undersampled Signals
5. The Sampling Theorem
6. Summary
7. Written Example
How to sample a continuous-time signal

Suppose you have some continuous-time signal, $x(t)$, and you’d like to sample it, in order to store the sample values in a computer. The samples are collected once every $T_s = \frac{1}{F_s}$ seconds:

$$x[n] = x(t = nT_s)$$
Aliasing

- A sampled sinusoid can be reconstructed perfectly if the Nyquist criterion is met, \(f < \frac{F_s}{2} \).
- If the Nyquist criterion is violated, then:
 - If \(\frac{F_s}{2} < f < F_s \), then it will be aliased to
 \[
 f_a = F_s - f \\
 z_a = z^*
 \]
 i.e., the sign of all sines will be reversed.
 - If \(F_s < f < \frac{3F_s}{2} \), then it will be aliased to
 \[
 f_a = f - F_s \\
 z_a = z
 \]
Outline

1. Review: Sampling
2. Spectrum Plots
3. Spectrum of Oversampled Signals
4. Spectrum of Undersampled Signals
5. The Sampling Theorem
6. Summary
7. Written Example
The spectrum plot of a periodic signal is a plot with
- frequency on the X-axis,
- showing a vertical spike at each frequency component,
- each of which is labeled with the corresponding phasor.
Example: Sine Wave

\[x(t) = \sin(2\pi 800t) = \frac{1}{2j} e^{j2\pi 800t} - \frac{1}{2j} e^{-j2\pi 800t} \]

The spectrum of \(x(t) \) is \(\{(-800, -\frac{1}{2j}), (800, \frac{1}{2j})\} \).
Example: Sine Wave

\[x(t) = \sin(2\pi 800t) \]

![Sine Wave Graph](image1)

Spectrum of \(x(t) \)

![Spectrum Graph](image2)

\((-\frac{1}{2}j)\)

\((\frac{1}{2}j)\)
Example: Quadrature Cosine

\[x(t) = 3 \cos \left(2\pi 800 t + \frac{\pi}{4} \right) \]

\[= \frac{3}{2} e^{j\pi/4} e^{j2\pi 800 t} + \frac{3}{2} e^{-j\pi/4} e^{-j2\pi 800 t} \]

The spectrum of \(x(t) \) is \(\{ (-800, \frac{3}{2} e^{-j\pi/4}), (800, \frac{3}{2} e^{j\pi/4}) \} \).
Example: Quadrature Cosine

\[x(t) = 3\cos(2\pi 800t + \pi/4) \]

![Time-domain waveform of \(x(t) \)](image1)

![Spectrum of \(x(t) \)](image2)
A signal is called **oversampled** if $F_s > 2f$ (e.g., so that sinc interpolation can reconstruct it from its samples).
The spectrum plot of a **discrete-time periodic signal** is a regular spectrum plot, but with the X-axis relabeled. Instead of frequency in Hertz $= \frac{\text{cycles}}{\text{second}}$, we use

$$\omega \left[\frac{\text{radians}}{\text{sample}} \right] = \frac{2\pi \left[\frac{\text{radians}}{\text{cycle}} \right] f \left[\frac{\text{cycles}}{\text{second}} \right]}{F_s \left[\frac{\text{samples}}{\text{second}} \right]}$$
How do we plot the aliasing?

Remember that a discrete-time signal has energy at
- f and $-f$, but also $F_s - f$ and $-F_s + f$, and $F_s + f$ and $-F_s - f$, and...
- ω and $-\omega$, but also $2\pi - \omega$ and $-2\pi + \omega$, and $2\pi + \omega$ and $-2\pi - \omega$, and...

Which ones should we plot? Answer: **plot all of them**! Usually we plot a few nearest the center, then add “…” at either end, to show that the plot continues forever.
Example: Sine Wave

Let’s sample at $F_s = 8000$ samples/second.

$$x[n] = \sin \left(\frac{2\pi 800n}{8000} \right)$$

$$= \sin \left(\frac{\pi n}{5} \right)$$

$$= \frac{1}{2j} e^{j\pi n/5} - \frac{1}{2j} e^{-j\pi n/5}$$

The spectrum of $x[n]$ is \{ \ldots, $(-\pi/5, -1/2j)$, $(\pi/5, 1/2j)$, \ldots \}.
Example: Sine Wave

\[x[n] = \sin\left(\frac{2\pi 800n}{8000}\right) = \sin\left(\frac{\pi n}{5}\right) \]

Spectrum of \(x[n] \)
Example: Quadrature Cosine

\[x[n] = 3 \cos \left(2\pi \frac{800n}{8000} + \frac{\pi}{4} \right) \]

\[= 3 \cos \left(\pi \frac{n}{5} + \frac{\pi}{4} \right) \]

\[= \frac{3}{2} e^{j\pi/4} e^{j\pi n/5} + \frac{3}{2} e^{-j\pi/4} e^{-j\pi n/5} \]

The spectrum of \(x[n] \) is \(\{ \ldots, (-\pi/5, \frac{3}{2} e^{-j\pi/4}), (\pi/5, \frac{3}{2} e^{j\pi/4}), \ldots \} \).
Example: Quadrature Cosine

\[x(t) = 3\cos\left(\pi/4 + 2\pi 800n/8000\right) = 3\cos(\pi/4 + \pi n/5) \]
Outline

1. Review: Sampling
2. Spectrum Plots
3. Spectrum of Oversampled Signals
4. Spectrum of Undersampled Signals
5. The Sampling Theorem
6. Summary
7. Written Example
A signal is called **undersampled** if $F_s < 2f$ (e.g., so that sinc interpolation can’t reconstruct it from its samples).
... but Aliasing?

Remember that a discrete-time signal has energy at

- f and $-f$, but also $F_s - f$ and $-F_s + f$, and $F_s + f$ and $-F_s - f$, and...
- ω and $-\omega$, but also $2\pi - \omega$ and $-2\pi + \omega$, and $2\pi + \omega$ and $-2\pi - \omega$, and...

We still want to plot all of these, but now ω and $-\omega$ won’t be the spikes closest to the center. Instead, some other spike will be closest to the center.
Example: Sine Wave

Let’s still sample at $F_s = 8000$, but we’ll use a sine wave at $f = 4800\text{Hz}$, so it gets undersampled.

$$x[n] = \sin \left(2\pi \frac{4800n}{8000}\right)$$
$$= \sin \left(6\pi \frac{n}{5}\right)$$
$$= -\sin \left(4\pi \frac{n}{5}\right)$$

$$= -\frac{1}{2j} e^{j4\pi n/5} + \frac{1}{2j} e^{j4\pi n/5}$$

The spectrum of $x[n]$ is $\{\ldots, (−4\pi/5, \frac{1}{2j}), (4\pi/5, −\frac{1}{2j}), \ldots\}$.
Example: Sine Wave

\[x[n] = \sin\left(2\pi \frac{4800n}{8000}\right) = \sin\left(6\pi n/5\right) = -\sin\left(4\pi n/5\right) \]

Spectrum of \(x[n] \)
Example: Quadrature Cosine

\[
x[n] = 3 \cos \left(2\pi \frac{4800n}{8000} + \frac{\pi}{4} \right)
= 3 \cos \left(6\pi n/5 + \frac{\pi}{4} \right)
= 3 \cos \left(4\pi n/5 - \frac{\pi}{4} \right)
= \frac{3}{2} e^{-j\pi/4} e^{j4\pi n/5} + \frac{3}{2} e^{j\pi/4} e^{-j4\pi n/5}
\]

The spectrum of \(x[n] \) is
\{\ldots, (-4\pi/5, 3/2 e^{j\pi/4}), (4\pi/5, 3/2 e^{-j\pi/4}), \ldots \}.\]
Example: Quadrature Cosine

\[x(t) = 3\cos(\pi/4 + 2\pi 4800n/8000) = 3\cos(\pi/4 + 6\pi n/5) = 3\cos(-\pi/4 + 4\pi n/5) \]
Outline

1. Review: Sampling
2. Spectrum Plots
3. Spectrum of Oversampled Signals
4. Spectrum of Undersampled Signals
5. The Sampling Theorem
6. Summary
7. Written Example
General periodic continuous-time signals

Let's assume that \(x(t) \) is periodic with some period \(T_0 \), therefore it has a Fourier series:

\[
x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0} = \sum_{k=0}^{\infty} |X_k| \cos \left(\frac{2\pi kt}{T_0} + \angle X_k \right)
\]
Eliminate the aliased tones

We already know that $e^{j2\pi kt/T_0}$ will be aliased if $|k|/T_0 > F_N$. So let’s assume that the signal is **band-limited**: it contains no frequency components with frequencies larger than $F_S/2$. That means that the only X_k with nonzero energy are the ones in the range $-N/2 \leq k \leq N/2$, where $N \leq F_S T_0$.

\[x(t) = \sum_{k=-N/2}^{N/2} X_k e^{j2\pi kt/T_0} = \sum_{k=0}^{N/2} |X_k| \cos \left(\frac{2\pi kt}{T_0} + \angle X_k \right) \]
Sample that signal!

Now let's sample that signal, at sampling frequency F_S:

$$x[n] = \sum_{k=-N/2}^{N/2} X_k e^{j2\pi kn/F_S T_0} = \sum_{k=0}^{N/2} |X_k| \cos \left(\frac{2\pi kn}{N} + \angle X_k \right)$$

So the highest digital frequency, when $k = F_S T_0/2$, is $\omega_k = \pi$. The lowest is $\omega_0 = 0$.

$$x[n] = \sum_{\omega_k=-\pi}^{\pi} X_k e^{j\omega_k n} = \sum_{\omega_k=0}^{\pi} |X_k| \cos (\omega_k n + \angle X_k)$$
Spectrum of a sampled periodic signal

- **x(t) with frequencies up to 63kHz**
- **Spectrum of x(t) with frequencies up to +/-64 kHz**
- **x(t) with frequencies up to 7kHz**
- **Spectrum of x(t) with frequencies up to +/-8 kHz**
- **x[n] = x(n/16000)**
- **Spectrum of x[n]**
The sampling theorem

As long as $-\pi \leq \omega_k \leq \pi$, we can recreate the continuous-time signal by either (1) using sinc interpolation, or (2) regenerating a continuous-time signal with the corresponding frequency:

$$f_k \left[\frac{\text{cycles}}{\text{second}} \right] = \frac{\omega_k \left[\frac{\text{radians}}{\text{sample}} \right]}{2\pi \left[\frac{\text{radians}}{\text{cycle}} \right]} \times F_s \left[\frac{\text{samples}}{\text{second}} \right]$$

$$x[n] = \cos(\omega_k n + \theta_k) \rightarrow x(t) = \cos(2\pi f_k t + \theta_k)$$
A continuous-time signal $x(t)$ with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$ if the samples are taken at a rate $F_s = 1/T_s$ that is $F_s \geq 2f_{\text{max}}$.

The sampling theorem
The spectrum plot of a periodic signal is a plot with

- frequency on the X-axis,
- showing a vertical spike at each frequency component,
- each of which is labeled with the corresponding phasor.
The spectrum plot of a **discrete-time periodic signal** is a regular spectrum plot, but with the X-axis relabeled. Instead of frequency in Hertz $= \frac{\text{cycles}}{\text{second}}$, we use

$$\omega \left[\frac{\text{radians}}{\text{sample}} \right] = \frac{2\pi \left[\frac{\text{radians}}{\text{cycle}} \right]}{F_s \left[\frac{\text{samples}}{\text{second}} \right]} f \left[\frac{\text{cycles}}{\text{second}} \right]$$
A continuous-time signal $x(t)$ with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$ if the samples are taken at a rate $F_s = 1/T_s$ that is $F_s \geq 2f_{\text{max}}$.
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>
Written Example

Let $x(t)$ be a sinusoid with some amplitude, some phase, and some frequency.

- Plot the spectrum of $x(t)$.
- Choose an F_s that undersamples it. Plot the spectrum of $x[n]$.