Review	Sampling	Aliasing	Aliased Frequency	Aliased Phase	Summary	Example

Lecture 6: Sampling and Aliasing

Mark Hasegawa-Johnson All content CC-SA 4.0 unless otherwise specified.

ECE 401: Signal and Image Analysis, Fall 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	Sampling	Aliasing	Aliased Frequency	Aliased Phase	Summary	Example

1 Review: Spectrum of continuous-time signals

2 Sampling

3 Aliasing

Aliased Frequency

5 Aliased Phase

6 Summary

7 Written Example

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Review ●○○○	Sampling 000	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary 00	Example 00
Outlin	e					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Review: Spectrum of continuous-time signals

2 Sampling

3 Aliasing

4 Aliased Frequency

5 Aliased Phase

- 6 Summary
- Written Example

Review ○●00	Sampling 000	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary 00	Example 00
Two-s	sided spe	ectrum				

The **spectrum** of x(t) is the set of frequencies, and their associated phasors,

Spectrum
$$(x(t)) = \{(f_{-N}, a_{-N}), \dots, (f_0, a_0), \dots, (f_N, a_N)\}$$

such that

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Review ○0●0	Sampling 000	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary 00	Example 00
Fourie	er's theo	rem				

One reason the spectrum is useful is that **any** periodic signal can be written as a sum of cosines. Fourier's theorem says that any x(t) that is periodic, i.e.,

$$x(t+T_0)=x(t)$$

can be written as

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k F_0 t}$$

which is a special case of the spectrum for periodic signals: $f_k = kF_0$, and $a_k = X_k$, and

$$F_0 = \frac{1}{T_0}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review	Sampling	Aliasing	Aliased Frequency	Aliased Phase	Summary	Example
○○○●	000	000000		0000000	00	00
Fourie	r Series					

• Analysis (finding the spectrum, given the waveform):

$$X_k = rac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi kt/T_0} dt$$

• Synthesis (finding the waveform, given the spectrum):

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Review 0000	Sampling ●○○	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary 00	Example 00
Outlir	าย					

1 Review: Spectrum of continuous-time signals

2 Sampling

3 Aliasing

Aliased Frequency

5 Aliased Phase

6 Summary

Written Example

Review Sampling Aliasing Aliased Frequency Aliased Phase Summary Example

How to sample a continuous-time signal

Suppose you have some continuous-time signal, x(t), and you'd like to sample it, in order to store the sample values in a computer. The samples are collected once every $T_s = \frac{1}{E_s}$ seconds:

$$x[n] = x(t = nT_s)$$

Example: a 1kHz sine wave

Sampling

000

Review

For example, suppose $x(t) = \sin(2\pi 1000t)$. By sampling at $F_s = 16000$ samples/second, we get

$$x[n] = \sin\left(2\pi 1000 \frac{n}{16000}\right) = \sin(\pi n/8)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Review 0000	Sampling 000	Aliasing ●00000	Aliased Frequency	Aliased Phase	Summary 00	Example 00
Outlin	ne					

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1 Review: Spectrum of continuous-time signals

2 Sampling

Aliased Frequency

5 Aliased Phase

- 6 Summary
- Written Example

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The question immediately arises: can every sine wave be reconstructed from its samples? The answer, unfortunately, is "no."

Review Sampling Aliasing Aliased Frequency Aliased Phase Summary Coordinate Control of the second se

For example, two signals $x_1(t)$ and $x_2(t)$, at 10kHz and 6kHz respectively:

$$x_1(t) = \cos(2\pi 10000t), \quad x_2(t) = \cos(2\pi 6000t)$$

Let's sample them at $F_s = 16,000$ samples/second:

$$x_1[n] = \cos\left(2\pi 10000 \frac{n}{16000}\right), \quad x_2[n] = \cos\left(2\pi 6000 \frac{n}{16000}\right)$$

Simplifying a bit, we discover that $x_1[n] = x_2[n]$. We say that the 10kHz tone has been "aliased" to 6kHz:

$$x_1[n] = \cos\left(\frac{5\pi n}{4}\right) = \cos\left(\frac{3\pi n}{4}\right)$$
$$x_2[n] = \cos\left(\frac{3\pi n}{4}\right) = \cos\left(\frac{5\pi n}{4}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Review Sampling Aliasing Aliased Frequency Aliased Phase Summary Example 0000 000 0000000 0000000 0000000 0000000 0000000

What is the highest frequency that can be reconstructed?

The highest frequency whose cosine can be exactly reconstructed from its samples is called the "Nyquist frequency," $F_N = F_S/2$. If $x(t) = \cos(2\pi F_N t)$, then

$$x[n] = \cos\left(2\pi F_N \frac{n}{F_S}\right) = \cos(\pi n) = (-1)^n$$

If you try to sample a signal whose frequency is above Nyquist (like the one shown on the left), then it gets **aliased** to a frequency below Nyquist (like the one shown on the right).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Review 0000	Sampling 000	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary 00	Example 00
Outlin	ne					

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1 Review: Spectrum of continuous-time signals

2 Sampling

3 Aliasing

- 4 Aliased Frequency
- **5** Aliased Phase

6 Summary

7 Written Example

Review 0000	Sampling 000	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary 00	Example 00
Aliase	d Freque	ency				

Suppose you have a cosine at frequency f:

$$x(t) = \cos(2\pi f t)$$

Suppose you sample it at F_s samples/second. If F_s is not high enough, it might get aliased to some other frequency, f_a .

$$x[n] = \cos(2\pi f n/F_s) = \cos(2\pi f_a n/F_s)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How can you predict what f_a will be?

Review	Sampling	Aliasing	Aliased Frequency	Aliased Phase	Summary	Example
0000	000	000000	○o●ooooo		00	00
Aliase	ed Freque	ency				

Aliasing comes from two sources:

$$cos(\phi) = cos(2\pi n - \phi)$$
$$cos(\phi) = cos(\phi - 2\pi n)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The equations above are true for any integer n.

Review 0000	Sampling 000	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary 00	Example 00
Aliase	ed Freque	ency				

Let's plug in $\phi = \frac{2\pi fn}{F_s}$, and $2\pi = \frac{2\pi F_s}{F_s}$. That gives us:

$$\cos\left(\frac{2\pi fn}{F_s}\right) = \cos\left(\frac{2\pi n(F_s - f)}{F_s}\right)$$
$$\cos\left(\frac{2\pi fn}{F_s}\right) = \cos\left(\frac{2\pi (f - F_s)n}{F_s}\right)$$

So a discrete-time cosine at frequency f is also a cosine at frequency $F_s - f$, and it's also a cosine at $f - F_s$.

・ロト・四ト・モート ヨー うへの

Review	Sampling	Aliasing	Aliased Frequency	Aliased Phase	Summary	Example
0000	000	000000	○○○○●○○○		00	00
Aliase	ed Freque	ency				

- A discrete-time cosine at frequency f is also a cosine at frequency $F_s f$, and it's also a cosine at $f F_s$.
- So which of those frequencies will we hear when we play the sinusoid back again?
- **ANSWER:** any frequency that can be reconstructed by the analog-to-digital converter. That means any frequency below the Nyquist frequency, $F_N = F_s/2$.

Review	Sampling	Aliasing	Aliased Frequency	Aliased Phase	Summary	Example
			00000000			

Aliased Frequency

Review	Sampling	Aliasing	Aliased Frequency	Aliased Phase	Summary	Example
			00000000			

Aliased Frequency

Review	Sampling	Aliasing	Aliased Frequency	Aliased Phase	Summary	Example
0000	000	000000	○○○○○○●		00	00
Aliase	d Freque	ency				

All of the following frequencies are actually **the same frequency** when a cosine is sampled at F_s samples/second.

$$f_a \in \{f - \ell F_s, \ell F_s - f : \ell \in \text{any integer}\}$$

The "aliased frequency" is whichever of those is below Nyquist $(F_s/2)$. Usually there's only one that's below Nyquist, so you can just look for

$$f_a = \min(f - \ell F_s, \ell F_s - f : \ell \in \text{any integer})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review 0000	Sampling 000	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary 00	Example 00
Outlin	ne					

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1 Review: Spectrum of continuous-time signals

2 Sampling

- 3 Aliasing
- 4 Aliased Frequency

5 Aliased Phase

- 6 Summary
- 7 Written Example

Review 0000	Sampling 000	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary 00	Example 00
Sine is	Differe	nt				

Sine waves are different for the following reason:

$$\sin(\phi) = -\sin(2\pi n - \phi)$$

 $\sin(\phi) = \sin(\phi - 2\pi n)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Review	Sampling	Aliasing	Aliased Frequency	Aliased Phase	Summary	Example
0000	000	000000	0000000		00	00
Sine is	s Differe	nt				

Therefore:

$$\sin\left(\frac{2\pi fn}{F_s}\right) = -\sin\left(\frac{2\pi n(F_s - f)}{F_s}\right)$$
$$\sin\left(\frac{2\pi fn}{F_s}\right) = \sin\left(\frac{2\pi (f - F_s)n}{F_s}\right)$$

So a discrete-time sine at frequency f is also a **negative** sine at frequency $F_s - f$, and a **positive** sine at frequency $f - F_s$.

<u>.</u>	-					
Review	Sampling	Aliasing	Aliased Frequency	Aliased Phase	Summary	Example
0000	000	000000	00000000	○00●000	00	00

Sine is Different

 Review
 Sampling
 Aliasing
 Aliased Frequency
 Aliased Phase
 Summary
 Example

 0000
 000
 0000000
 0000000
 0000000
 0000000
 0000000

Aliased Phase of a General Phasor

For a general complex exponential, we get:

$$ze^{j\phi} = ze^{j(\phi-2\pi n)} = \left(z^*e^{j(2\pi n-\phi)}\right)^*$$

Therefore:

$$\Re\left\{ze^{j\frac{2\pi fn}{F_s}}\right\} = \Re\left\{ze^{j\frac{2\pi (f-F_s)n}{F_s}}\right\} = \Re\left\{z^*e^{j\frac{2\pi (F_s-f)n}{F_s}}\right\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Review Sampling Aliasing Aliased Frequency Aliased Phase Summary Example oo

Aliased Phase of a General Phasor

Suppose we have some frequency f, and we're trying to find its aliased frequency f_a .

• Among the several possibilities, if $f_a = F_s - f$ is below Nyquist, then that's the frequency we'll hear. Its phasor will be the complex conjugate of the original phasor,

$$z_a = z^*$$

• On the other hand, if $f_a = f - F_s$ is below Nyquist, then that's the frequency we'll hear. Its phasor will be the same as the phasor of the original sinusoid:

$$z_a = z$$

 Review
 Sampling
 Aliasing
 Aliased Frequency
 Aliased Phase
 Summary
 Example

 0000
 000
 0000000
 0000000
 0000000
 000
 00

Aliased Phase of a General Phasor

Review	Sampling	Aliasing	Aliased Frequency	Aliased Phase	Summary	Example
0000	000	000000	0000000		●○	00
Outlin	ne					

1 Review: Spectrum of continuous-time signals

2 Sampling

- 3 Aliasing
- 4 Aliased Frequency

5 Aliased Phase

6 Summary

Review 0000	Sampling 000	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary ○●	Example 00
Summ	ary					

- A sampled sinusoid can be reconstructed perfectly if the Nyquist criterion is met, $f < \frac{F_s}{2}$.
- If the Nyquist criterion is violated, then:
 - If $\frac{F_s}{2} < f < F_s$, then it will be aliased to

$$f_a = F_s - f$$
$$z_a = z^*$$

i.e., the sign of all sines will be reversed. • If $F_s < f < \frac{3F_s}{2}$, then it will be aliased to

$$f_a = f - F_s$$
$$z_a = z$$

Review 0000	Sampling 000	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary 00	Example ●○
Outlin	ne					

1 Review: Spectrum of continuous-time signals

2 Sampling

- 3 Aliasing
- 4 Aliased Frequency

5 Aliased Phase

6 Summary

Review 0000	Sampling 000	Aliasing 000000	Aliased Frequency	Aliased Phase	Summary 00	Example ○●
Writt	en Exam	ple				

Sketch a sinusoid with some arbitrary phase (say, $-\pi/4$). Show where the samples are if it's sampled:

- more than twice per period
- more than once per period, but less than twice per period

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

less than once per period