Lecture 4: Fourier Series

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2021
(1) Review: Spectrum
(2) Orthogonality
(3) Fourier Series

4 Example: Square Wave
(5) Summary

Outline

(1) Review: Spectrum
(2) Orthogonality
(3) Fourier Series

4 Example: Square Wave
(5) Summary

Two-sided spectrum

The spectrum of $x(t)$ is the set of frequencies, and their associated phasors,

$$
\operatorname{Spectrum}(x(t))=\left\{\left(f_{-N}, a_{-N}\right), \ldots,\left(f_{0}, a_{0}\right), \ldots,\left(f_{N}, a_{N}\right)\right\}
$$

such that

$$
x(t)=\sum_{k=-N}^{N} a_{k} e^{j 2 \pi f_{k} t}
$$

Fourier's theorem

One reason the spectrum is useful is that any periodic signal can be written as a sum of cosines. Fourier's theorem says that any $x(t)$ that is periodic, i.e.,

$$
x\left(t+T_{0}\right)=x(t)
$$

can be written as

$$
x(t)=\sum_{k=-\infty}^{\infty} x_{k} e^{j 2 \pi k F_{0} t}
$$

which is a special case of the spectrum for periodic signals:
$f_{k}=k F_{0}$, and $a_{k}=X_{k}$, and

$$
F_{0}=\frac{1}{T_{0}}
$$

Analysis and Synthesis

- Fourier Synthesis is the process of generating the signal, $x(t)$, given its spectrum. Last lecture, you learned how to do this, in general.
- Fourier Analysis is the process of finding the spectrum, X_{k}, given the signal $x(t)$. I'll tell you how to do that today.

Outline

(1) Review: Spectrum

(2) Orthogonality
(3) Fourier Series

4 Example: Square Wave
(5) Summary

Orthogonality

Two functions $f(t)$ and $g(t)$ are said to be orthogonal, over some period of time T, if

$$
\int_{0}^{T} f(t) g(t)=0
$$

Sine and Cosine are Orthogonal

For example, $\sin (2 \pi t)$ and $\cos (2 \pi t)$ are orthogonal over the period $0 \leq t \leq 1$:

Sinusoids at Different Frequencies are Orthogonal

Similarly, sinusoids at different frequencies are orthogonal over any time segment that contains an integer number of periods:

How to use orthogonality

Suppose we have a signal that is known to be
$x(t)=a \cos (2 \pi 3 t)+b \sin (2 \pi 3 t)+c \cos (2 \pi 4 t)+d \sin (2 \pi 4 t)+\ldots$
... but we don't know a, b, c, d, etc. Let's use orthogonality to figure out the value of b :

$$
\begin{aligned}
\int_{0}^{1} x(t) \sin (2 \pi 3 t) d t & =a \int_{0}^{1} \cos (2 \pi 3 t) \sin (2 \pi 3 t) d t \\
& +b \int_{0}^{1} \sin (2 \pi 3 t) \sin (2 \pi 3 t) d t \\
& +c \int_{0}^{1} \cos (2 \pi 4 t) \sin (2 \pi 3 t) d t \\
& +e \int_{0}^{1} \sin (2 \pi 4 t) \sin (2 \pi 3 t) d t+\ldots
\end{aligned}
$$

How to use orthogonality

... which simplifies to

$$
\int_{0}^{1} x(t) \sin (2 \pi 3 t) d t=0+b \int_{0}^{1} \sin ^{2}(2 \pi 3 t) d t+0+0+\ldots
$$

The average value of $\sin ^{2}(t)$ is $1 / 2$, so

$$
\int_{0}^{1} x(t) \sin (2 \pi 3 t) d t=\frac{b}{2}
$$

If we don't know the value of b, but we do know how to integrate $\int x(t) \sin (2 \pi 3 t) d t$, then we can find the value of b from the formula above.

How to use orthogonality

How to use Orthogonality: Fourier Series

We still have one problem. Integrating $\int x(t) \cos (2 \pi 4 t) d t$ is hard-lots of ugly integration by parts and so on. What do we do?
(1) Fourier Series: Instead of cosine, use complex exponential:

$$
\int x(t) e^{-j 2 \pi f t} d t
$$

That integral is still hard, but it's always easier than $\int x(t) \cos (2 \pi 4 t) d t$. It can usually be solved with some combination of integration by parts, variable substitution, etc.

Outline

(1) Review: Spectrum

(2) Orthogonality
(3) Fourier Series

4 Example: Square Wave
(5) Summary

Fourier's Theorem

Remember Fourier's theorem. He said that any periodic signal, with a period of T_{0} seconds, can be written

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}
$$

What I want to do, now, is to prove that if you know $x(t)$, you can find its Fourier series coefficients using the following formula:

$$
X_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k t / T_{0}} d t
$$

Fourier's Theorem

Remember Fourier's theorem. He said that any periodic signal, with a period of T_{0} seconds, can be written

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}
$$

I'm going to find the formula for X_{k} using the following idea:

- Orthogonality: $e^{-j 2 \pi \ell t / T_{0}}$ is orthogonal to $e^{j 2 \pi k t / T_{0}}$ for any $\ell \neq k$.

Fourier's Theorem and Orthogonality

Orthogonality: start with $x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}$, and multiply both sides by $e^{-j 2 \pi \ell t / T_{0}}$:

$$
x(t) e^{-2 \pi \ell t / T_{0}}=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi(k-\ell) t / T_{0}}
$$

Now integrate both sides of that equation, over any complete period:

$$
\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-2 \pi \ell t / T_{0}} d t=\sum_{k=-\infty}^{\infty} x_{k} \frac{1}{T_{0}} \int_{0}^{T_{0}} e^{j 2 \pi(k-\ell) t / T_{0}} d t
$$

Fourier's Theorem and Orthogonality

Now think really hard about what's inside that integral sign:

$$
\begin{aligned}
& \frac{1}{T_{0}} \int_{0}^{T_{0}} e^{j 2 \pi(k-\ell) t / T_{0}} d t \\
& =\frac{1}{T_{0}} \int_{0}^{T_{0}} \cos \left(\frac{2 \pi(k-\ell) t}{T_{0}}\right) d t \\
& +j \frac{1}{T_{0}} \int_{0}^{T_{0}} \sin \left(\frac{2 \pi(k-\ell) t}{T_{0}}\right) d t
\end{aligned}
$$

- If $k \neq \ell$, then we're integrating a
cosine and a sine over $k-\ell$ periods. That integral is always zero.
- If $k=\ell$, then we're integrating

$$
\frac{1}{T_{0}} \int_{0}^{T_{0}} \cos (0) d t++j \frac{1}{T_{0}} \int_{0}^{T_{0}} \sin (0) d t=1
$$

Fourier Series: Analysis

So, because of orthogonality:

$$
\begin{aligned}
\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-2 \pi \ell t / T_{0}} d t & =\sum_{k=-\infty}^{\infty} X_{k} \frac{1}{T_{0}} \int_{0}^{T_{0}} e^{j 2 \pi(k-\ell) t / T_{0}} d t \\
& =\ldots+0+0+0+X_{\ell}+0+0+0+\ldots
\end{aligned}
$$

Fourier Series

- Analysis (finding the spectrum, given the waveform):

$$
X_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k t / T_{0}} d t
$$

- Synthesis (finding the waveform, given the spectrum):

$$
x(t)=\sum_{k=-\infty}^{\infty} x_{k} e^{j 2 \pi k t / T_{0}}
$$

Outline

(1) Review: Spectrum

(2) Orthogonality
(3) Fourier Series

4 Example: Square Wave
(5) Summary

Fourier series: Square wave example

Square wave example

Let's use a square wave with a nonzero DC value, like this one:

Fourier Series

- Analysis (finding the spectrum, given the waveform):

$$
X_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) e^{-j 2 \pi k t / T_{0}} d t
$$

Fourier Series

- Analysis (finding the spectrum, given the waveform):

$$
\begin{aligned}
X_{k} & =\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} x(t) e^{-j 2 \pi k t / T_{0}} d t \\
& =\frac{1}{T_{0}} \int_{-T_{0} / 4}^{T_{0} / 4} e^{-j 2 \pi k t / T_{0}} d t
\end{aligned}
$$

Square wave: the X_{0} term

$$
X_{0}=\frac{1}{T_{0}} \int_{-T_{0} / 4}^{T_{0} / 4} e^{-j 2 \pi k t / T_{0}} d t
$$

\ldots but if $k=0$, then $e^{-j 2 \pi k t / T_{0}}=1!!!$

$$
X_{0}=\frac{1}{T_{0}} \int_{-T_{0} / 4}^{T_{0} / 4} 1 d t=\frac{1}{2}
$$

Square wave: the X_{0} term

$$
X_{0}=\frac{1}{2}
$$

Square wave: the X_{k} terms, $k \neq 0$

$$
X_{k}=\frac{1}{T_{0}} \int_{-T_{0} / 4}^{T_{0} / 4} e^{-j 2 \pi k t / T_{0}} d t
$$

Square wave: the X_{k} terms, $k \neq 0$

$$
\begin{aligned}
X_{k} & =\frac{1}{T_{0}} \int_{-T_{0} / 4}^{T_{0} / 4} e^{-j 2 \pi k t / T_{0}} d t \\
& =\frac{1}{T_{0}}\left(\frac{1}{-j 2 \pi k / T_{0}}\right)\left[e^{-j 2 \pi k t / T_{0}}\right]_{-T_{0} / 4}^{T_{0} / 4} \\
& =\left(\frac{j}{2 \pi k}\right)\left[e^{-j 2 \pi k\left(T_{0} / 4\right) / T_{0}}-e^{-j 2 \pi k\left(-T_{0} / 4\right) / T_{0}}\right] \\
& =\left(\frac{j}{2 \pi k}\right)\left[e^{-j \pi k / 2}-e^{j \pi k / 2}\right] \\
& =\frac{1}{\pi k} \sin \left(\frac{\pi k}{2}\right) \\
& = \begin{cases}0 & k \text { even } \\
\pm \frac{1}{\pi k} & k \text { odd }\end{cases}
\end{aligned}
$$

Square wave: the X_{1} terms

$$
X_{1}=\frac{1}{\pi}
$$

Square wave: the X_{2} term

$$
X_{2}=0
$$

Square wave: the X_{3} term

$$
x_{3}=-\frac{1}{3 \pi}
$$

Square Wave $\mathrm{x}(\mathrm{t})$

Square wave: the X_{5} term

$$
x_{5}=\frac{1}{5 \pi}
$$

Square Wave $\mathrm{x}(\mathrm{t})$

Square wave: the whole Fourier series

$$
x(t)=\frac{1}{2}+\frac{1}{\pi}\left(\cos \left(\frac{2 \pi t}{T_{0}}\right)-\frac{1}{3} \cos \left(\frac{6 \pi t}{T_{0}}\right)+\frac{1}{5} \cos \left(\frac{10 \pi t}{T_{0}}\right)-\frac{1}{7} \ldots\right)
$$

Square Wave $x(t)$

Outline

(1) Review: Spectrum

(2) Orthogonality
(3) Fourier Series

4 Example: Square Wave
(5) Summary

Summary

- Analysis (finding the spectrum, given the waveform):

$$
X_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j 2 \pi k t / T_{0}} d t
$$

- Synthesis (finding the waveform, given the spectrum):

$$
x(t)=\sum_{k=-\infty}^{\infty} x_{k} e^{j 2 \pi k t / T_{0}}
$$

