Lecture 4: Fourier Series

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2021
1. Review: Spectrum

2. Orthogonality

3. Fourier Series

4. Example: Square Wave

5. Summary
Outline

1. Review: Spectrum
2. Orthogonality
3. Fourier Series
4. Example: Square Wave
5. Summary
The **spectrum** of $x(t)$ is the set of frequencies, and their associated phasors,

$$\text{Spectrum} \ (x(t)) = \{(f_{-N}, a_{-N}), \ldots, (f_0, a_0), \ldots, (f_N, a_N)\}$$

such that

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$
Fourier’s theorem

One reason the spectrum is useful is that any periodic signal can be written as a sum of cosines. Fourier’s theorem says that any $x(t)$ that is periodic, i.e.,

$$x(t + T_0) = x(t)$$

can be written as

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kF_0 t}$$

which is a special case of the spectrum for periodic signals: $f_k = kF_0$, and $a_k = X_k$, and

$$F_0 = \frac{1}{T_0}$$
Analysis and Synthesis

- **Fourier Synthesis** is the process of generating the signal, $x(t)$, given its spectrum. Last lecture, you learned how to do this, in general.

- **Fourier Analysis** is the process of finding the spectrum, X_k, given the signal $x(t)$. I’ll tell you how to do that today.
Outline

1. Review: Spectrum
2. Orthogonality
3. Fourier Series
4. Example: Square Wave
5. Summary
Two functions $f(t)$ and $g(t)$ are said to be **orthogonal**, over some period of time T, if

$$
\int_{0}^{T} f(t)g(t) = 0
$$
Sine and Cosine are Orthogonal

For example, $\sin(2\pi t)$ and $\cos(2\pi t)$ are orthogonal over the period $0 \leq t \leq 1$:
Similarly, sinusoids at different frequencies are orthogonal over any time segment that contains an integer number of periods:
How to use orthogonality

Suppose we have a signal that is known to be

\[x(t) = a \cos(2\pi 3t) + b \sin(2\pi 3t) + c \cos(2\pi 4t) + d \sin(2\pi 4t) + \ldots \]

\ldots but we don’t know \(a, b, c, d\), etc. Let’s use orthogonality to figure out the value of \(b\):

\[
\int_0^1 x(t) \sin(2\pi 3t) dt = a \int_0^1 \cos(2\pi 3t) \sin(2\pi 3t) dt \\
+ b \int_0^1 \sin(2\pi 3t) \sin(2\pi 3t) dt \\
+ c \int_0^1 \cos(2\pi 4t) \sin(2\pi 3t) dt \\
+ e \int_0^1 \sin(2\pi 4t) \sin(2\pi 3t) dt + \ldots
\]
How to use orthogonality

\[\int_0^1 x(t) \sin(2\pi 3t) dt = 0 + b \int_0^1 \sin^2(2\pi 3t) dt + 0 + 0 + \ldots \]

The average value of \(\sin^2(t) \) is \(1/2 \), so

\[\int_0^1 x(t) \sin(2\pi 3t) dt = \frac{b}{2} \]

If we don’t know the value of \(b \), but we do know how to integrate \(\int x(t) \sin(2\pi 3t) dt \), then we can find the value of \(b \) from the formula above.
How to use orthogonality

\[x(t) = 1.5 \sin(2\pi 3t) + 0.25 \sin(2\pi 4t) \]

\[\int x(t) \sin(2\pi 3t) \, dt = \frac{1.5}{2} \]

\[\int x(t) \sin(2\pi 4t) \, dt = \frac{0.25}{2} \]
How to use Orthogonality: Fourier Series

We still have one problem. Integrating $\int x(t) \cos(2\pi 4t) dt$ is hard—lots of ugly integration by parts and so on. What do we do?

1. **Fourier Series:** Instead of cosine, use complex exponential:

 $$\int x(t) e^{-j2\pi ft} dt$$

 That integral is still hard, but it’s always easier than $\int x(t) \cos(2\pi 4t) dt$. It can usually be solved with some combination of integration by parts, variable substitution, etc.
Outline

1. Review: Spectrum
2. Orthogonality
3. Fourier Series
4. Example: Square Wave
5. Summary
Remember Fourier’s theorem. He said that any periodic signal, with a period of T_0 seconds, can be written

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$$

What I want to do, now, is to prove that if you know $x(t)$, you can find its Fourier series coefficients using the following formula:

$$X_k = \frac{1}{T_0} \int_{0}^{T_0} x(t)e^{-j2\pi kt/T_0} dt$$
Fourier’s Theorem

Remember Fourier’s theorem. He said that any periodic signal, with a period of T_0 seconds, can be written

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0}$$

I’m going to find the formula for X_k using the following idea:

- **Orthogonality:** $e^{-j2\pi \ell t/T_0}$ is orthogonal to $e^{j2\pi kt/T_0}$ for any $\ell \neq k$.
Orthogonality: start with \(x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0} \), and multiply both sides by \(e^{-j2\pi \ell t/T_0} \):

\[
x(t)e^{-2\pi \ell t/T_0} = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi (k-\ell)t/T_0}
\]

Now integrate both sides of that equation, over any complete period:

\[
\frac{1}{T_0} \int_{0}^{T_0} x(t)e^{-2\pi \ell t/T_0} dt = \sum_{k=-\infty}^{\infty} X_k \frac{1}{T_0} \int_{0}^{T_0} e^{j2\pi (k-\ell)t/T_0} dt
\]
Fourier’s Theorem and Orthogonality

Now think really hard about what’s inside that integral sign:

\[
\frac{1}{T_0} \int_0^{T_0} e^{j2\pi(k-\ell)t/T_0} \, dt
= \frac{1}{T_0} \int_0^{T_0} \cos \left(\frac{2\pi(k-\ell)t}{T_0} \right) \, dt \\
+ j \frac{1}{T_0} \int_0^{T_0} \sin \left(\frac{2\pi(k-\ell)t}{T_0} \right) \, dt
\]

- If \(k \neq \ell \), then we’re integrating a cosine and a sine over \(k-\ell \) periods. That integral is always zero.

- If \(k = \ell \), then we’re integrating

\[
\frac{1}{T_0} \int_0^{T_0} \cos(0) \, dt + j \frac{1}{T_0} \int_0^{T_0} \sin(0) \, dt = 1
\]
So, because of orthogonality:

\[
\frac{1}{T_0} \int_0^{T_0} x(t) e^{-2\pi \ell t/T_0} \, dt = \sum_{k=\infty}^{\infty} X_k \frac{1}{T_0} \int_0^{T_0} e^{j2\pi (k-\ell)t/T_0} \, dt = \ldots + 0 + 0 + 0 + X_\ell + 0 + 0 + 0 + \ldots
\]
Fourier Series

- **Analysis** (finding the spectrum, given the waveform):
 \[X_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j2\pi kt/T_0} \, dt \]

- **Synthesis** (finding the waveform, given the spectrum):
 \[x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0} \]
1. Review: Spectrum
2. Orthogonality
3. Fourier Series
4. Example: Square Wave
5. Summary
Fourier series: Square wave example
Square wave example

Let's use a square wave with a nonzero DC value, like this one:

\[x(t) = \begin{cases}
1 & -\frac{T_0}{4} < t < \frac{T_0}{4} \\
0 & \text{otherwise}
\end{cases} \]
• **Analysis** (finding the spectrum, given the waveform):

\[X_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-j2\pi kt/T_0} dt \]
Analysis (finding the spectrum, given the waveform):

\[X_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t)e^{-j2\pi kt/T_0} dt \]

\[= \frac{1}{T_0} \int_{-T_0/4}^{T_0/4} e^{-j2\pi kt/T_0} dt \]
Square wave: the X_0 term

$$X_0 = \frac{1}{T_0} \int_{-T_0/4}^{T_0/4} e^{-j2\pi kt/T_0} dt$$

...but if $k = 0$, then $e^{-j2\pi kt/T_0} = 1$!!

$$X_0 = \frac{1}{T_0} \int_{-T_0/4}^{T_0/4} 1dt = \frac{1}{2}$$
Square wave: the X_0 term

$$X_0 = \frac{1}{2}$$
Square wave: the X_k terms, $k \neq 0$

$$X_k = \frac{1}{T_0} \int_{-T_0/4}^{T_0/4} e^{-j2\pi kt/T_0} dt$$
Square wave: the X_k terms, $k \neq 0$

$$X_k = \frac{1}{T_0} \int_{-T_0/4}^{T_0/4} e^{-j2\pi kt/T_0} \, dt$$

$$= \frac{1}{T_0} \left(\frac{1}{-j2\pi k/T_0} \right) \left[e^{-j2\pi k T_0/T_0} \right]_{-T_0/4}^{T_0/4}$$

$$= \left(\frac{j}{2\pi k} \right) \left[e^{-j2\pi k(T_0/4)/T_0} - e^{-j2\pi k(-T_0/4)/T_0} \right]$$

$$= \left(\frac{j}{2\pi k} \right) \left[e^{-j\pi k/2} - e^{j\pi k/2} \right]$$

$$= \frac{1}{\pi k} \sin \left(\frac{\pi k}{2} \right)$$

$$= \begin{cases}
0 & k \text{ even} \\
\pm \frac{1}{\pi k} & k \text{ odd}
\end{cases}$$
Square wave: the X_1 terms

$$X_1 = \frac{1}{\pi}$$
Square wave: the X_2 term

$$X_2 = 0$$
Square wave: the X_3 term

$$X_3 = -\frac{1}{3\pi}$$
Square wave: the X_5 term

$$X_5 = \frac{1}{5\pi}$$
Square wave: the whole Fourier series

\[x(t) = \frac{1}{2} + \frac{1}{\pi} \left(\cos \left(\frac{2\pi t}{T_0} \right) - \frac{1}{3} \cos \left(\frac{6\pi t}{T_0} \right) + \frac{1}{5} \cos \left(\frac{10\pi t}{T_0} \right) - \frac{1}{7} \ldots \right) \]
Outline

1. Review: Spectrum
2. Orthogonality
3. Fourier Series
4. Example: Square Wave
5. Summary
Summary

- **Analysis** (finding the spectrum, given the waveform):
 \[X_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi kt/T_0} dt \]

- **Synthesis** (finding the waveform, given the spectrum):
 \[x(t) = \sum_{k=\infty}^{\infty} X_k e^{j2\pi kt/T_0} \]