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SOHCAHTOA

Sine and Cosine functions were invented to describe the sides of a
right triangle:

sin θ =
Opposite

Hypotenuse

cos θ =
Adjacent

Hypotenuse

tan θ =
Opposite

Adjacent
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SOHCAHTOA

By Cmglee, CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:Trigonometric_function_triangle_mnemonic.svg

https://commons.wikimedia.org/wiki/File:Trigonometric_function_triangle_mnemonic.svg
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Sines, Cosines, and Circles

Imagine an ant walking counter-clockwise around a circle of radius
A. Suppose the ant walks all the way around the circle once every
T seconds.

The ant’s horizontal position at time t, x(t), is given by

x(t) = A cos

(
2πt

T

)
The ant’s vertical position, y(t), is given by

y(t) = A sin

(
2πt

T

)
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Sines, Cosines, and Circles
by Gonfer, CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Unfasor.gif

https://commons.wikimedia.org/wiki/File:Unfasor.gif
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x(t) and y(t)

By Inductiveload, public domain image 2008,

https://commons.wikimedia.org/wiki/File:Sine_and_Cosine.svg

https://commons.wikimedia.org/wiki/File:Sine_and_Cosine.svg
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Period and Frequency

The period of a cosine, T , is the time required for one complete
cycle. The frequency, f = 1/T , is the number of cycles per
second. This picture shows

y(t) = A sin

(
2πt

T

)
= A sin (2πft)
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Pure Tones

In music or audiometry, a “pure tone” at frequency f is an
acoustic signal, p(t), given by

p(t) = A cos (2πft + θ)

for any amplitude A and phase θ.

Pure Tone Demo

https://en.wikipedia.org/wiki/Sine_wave
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Phase, Distance, and Time

Remember the ant on the circle. The circle has a radius of A (say,
A centimeters).

When the ant has walked a distance of A centimeters around
the outside of the circle, then it has moved to an angle of 1
radian.

When the ant walks all the way around the circle, it has
walked 2πA centimeters, which is 2π radians.
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Phase, Distance, and Time

National Institute of Standards and Technology, public domain image 2010 https://www.nist.gov/pml/

time-and-frequency-division/popular-links/time-frequency-z/time-and-frequency-z-p

https://www.nist.gov/pml/time-and-frequency-division/popular-links/time-frequency-z/time-and-frequency-z-p
https://www.nist.gov/pml/time-and-frequency-division/popular-links/time-frequency-z/time-and-frequency-z-p
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Phase Shift

Where did the ant start?

If the ant starts at an angle of θ, and continues walking
counter-clockwise at f cycles/second, then

x(t) = A cos

(
2πt

T
+ θ

)
This is exactly the same as if it started walking from phase 0
at time −τ = − θ

2πf :

x(t) = A cos

(
2π

T
(t + τ)

)
, τ =

Tθ

2π
=

θ

2πf
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Phase Shift

Where did the ant start?
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Phase Shift

What is the ant’s x(t) position, based on where it started?
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Beat tones

When two pure tones at similar frequencies are added together,
you hear the two tones “beating” against each other.

Beat tones demo

https://en.wikipedia.org/wiki/Beat_(acoustics)
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Beat tones and Trigonometric identities

Beat tones can be explained using this trigonometric identity:

cos(a) cos(b) =
1

2
cos(a + b) +

1

2
cos(a− b)

Let’s do the following variable substitution:

a + b = 2πf1t

a− b = 2πf2t

a = 2πfavet

b = 2πfbeatt

where fave = f1+f2
2 , and fbeat = f1−f2

2 .
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Beat tones and Trigonometric identities

Re-writing the trigonometric identity, we get:

1

2
cos(2πf1t) +

1

2
cos(2πf2t) = cos(2πfbeatt) cos(2πfavet)

So when we play two tones together, f1 = 110Hz and f2 = 104Hz,
it sounds like we’re playing a single tone at fave = 107Hz,
multiplied by a beat frequency fbeat = 3 (double beats)/second.
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Beat tones
by Adjwilley, CC-SA 3.0, https://commons.wikimedia.org/wiki/File:WaveInterference.gif

https://commons.wikimedia.org/wiki/File:WaveInterference.gif
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More complex beat tones

What happens if we add together, say, three tones?

cos(2π107t) + cos(2π110t) + cos(2π104t) = ???

For this, and other more complicated operations, it is much, much
easier to work with complex exponentials, instead of cosines.
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Euler’s Identity

Euler asked: “What is e jθ?” He used the exponential summation:

ex = 1 + x +
1

2
x2 + . . .

1

n!
xn + . . .

to show that
e jθ = cos θ + j sin θ
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Euler’s formula

By Gunther, CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Euler%27s_formula.svg

https://commons.wikimedia.org/wiki/File:Euler%27s_formula.svg
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Complex conjugates

The polar form of a complex number is z = re jθ,

z = re jθ = r cos θ + jr sin θ

The complex conjugate is defined to be the mirror image of z ,
mirrored through the real axis:

z∗ = re−jθ = r cos θ − jr sin θ
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Complex conjugate

By Oleg Alexandrov, CC-SA 3.0,

https://commons.wikimedia.org/wiki/File:Complex_conjugate_picture.svg

https://commons.wikimedia.org/wiki/File:Complex_conjugate_picture.svg
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Real part of a complex number

If we know z and z∗,

z = re jθ = r cos θ + jr sin θ

z∗ = re−jθ = r cos θ − jr sin θ

Then we can get the real part of z back again as

<{z} =
1

2
(z + z∗)
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Why complex exponentials are better than cosines

Suppose we want to add together a lot of phase shifted, scaled
cosines, all at the same frequency:

x(t) = A cos (2πft + θ) + B cos (2πft + φ) + C cos (2πft + ψ)

What is x(t)?
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Why complex exponentials are better than cosines

We can simplify this problem by finding the phasor
representation of the tones (I’ll give you a formal definition of
“phasor” in a few slides):

A cos (2πft + θ) = <
{
Ae jθe j2πft

}
B cos (2πft + φ) = <

{
Be jφe j2πft

}
A cos (2πft + ψ) = <

{
Ce jθe j2ψft

}
So

x(t) = <
{(

Ae jθ + Be jφ + Ce jψ
)
e j2πft

}
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Why complex exponentials are better than cosines

We add complex numbers by (1) adding their real parts, and (2)
adding their imaginary parts:

Ae jθ + Be jφ + Ce jψ = (A cos θ + B cosφ+ C cosψ)

+ j(A sin θ + B sinφ+ C sinψ)

By Booyabazooka, public domain image 2009,

https://commons.wikimedia.org/wiki/File:Vector_Addition.svg

https://commons.wikimedia.org/wiki/File:Vector_Addition.svg
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Adding phasors
by Gonfer, CC-SA 3.0, https://commons.wikimedia.org/wiki/File:Sumafasores.gif

https://commons.wikimedia.org/wiki/File:Sumafasores.gif
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Why complex exponentials are better than cosines

Suppose we want to add together a lot of phase shifted, scaled
cosines, all at the same frequency:

x(t) = A cos (2πft + θ) + B cos (2πft + φ) + C cos (2πft + ψ)

Here’s the fastest way to do that:

1 Convert all the tones to their phasors, a = Ae jθ, b = Be jφ,
and c = Ce jψ.

2 Add the phasors: x = a + b + c .

3 Take the real part:

x(t) = <
{
xe j2πft

}
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BTW, What is a “phaser”?

By McFadden, Strauss Eddy & Irwin for Desilu Productions, public domain image 1966,

https://commons.wikimedia.org/wiki/File:William_Shatner_Sally_Kellerman_Star_Trek_1966.JPG

https://commons.wikimedia.org/wiki/File:William_Shatner_Sally_Kellerman_Star_Trek_1966.JPG
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BTW, What is a ���
���XXXXXX“phaser” “phasor”?

Wikipedia has the following definition, which is the best I’ve ever
seen:

The function Ae j(ωt+θ) is called the analytic representation
of A cos(ωt + θ).

It is sometimes convenient to refer to the entire function as a
phasor. But the term phasor usually implies just the static
vector Ae jθ.

In other words, the “phasor” can mean either Ae j(ωt+θ) or just
Ae jθ. If you’re asked for the phasor representation of some cosine,
either answer is correct.

https://en.wikipedia.org/wiki/Phasor
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Some phasor demos from the textbook

Here are some phasor demos, provided with the textbook.

One rotating phasor demo: This shows how the cosine,
cos(2πft + θ), is the real part of the phasor e j(2πft+θ).

Positive and Negative Frequency Phasors: This shows
how you can get the real part of a phasor by adding its
complex conjugate (its “negative frequency phasor”):

cos(2πft + θ) =
1

2
e j(2πft+θ) +

1

2
e−j(2πft+θ)

http://dspfirst.gatech.edu/chapters/03spect/demos/phasors/index.html
http://dspfirst.gatech.edu/chapters/03spect/demos/phasors/index.html
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Summary

Cosines and Sines:

A cos

(
2πt

T
+ θ

)
= A cos (2πf (t + τ))

Beat Tones:

cos(a) cos(b) =
1

2
cos(a + b) +

1

2
cos(a− b)

Phasors:
1 Convert all the tones to their phasors, a = Ae jθ, b = Be jφ,

and c = Ce jψ.
2 Add the phasors: x = a + b + c .
3 Take the real part:

x(t) = <
{
xe j2πft

}
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