ECE 401 Signal and Image Analysis Homework 5

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: Monday, 11/2/2020; Due: Monday, 11/9/2020
Reading: DSP First Sections 10.11-10.12

Problem 5.1

What is $h[n]$ if

$$
H(z)=\frac{1}{\left(1-e^{j 0.1 \pi} z^{-1}\right)\left(1-e^{-j 0.1 \pi} z^{-1}\right)}
$$

Solution: Using PFE, we get

$$
H(z)=\frac{C_{1}}{1-e^{j 0.1 \pi} z^{-1}}+\frac{C_{1}^{*}}{1-e^{-j 0.1 \pi} z^{-1}}
$$

Solving for C_{1}, we can find that $C_{1}=p_{1} /\left(p_{1}-p_{1}^{*}\right)=e^{j 0.1 \pi} /(2 j \sin (0.1 \pi))$, so

$$
h[n]=\left(\frac{e^{j 0.1 \pi(n+1)}}{2 j \sin (0.1 \pi)}-\frac{e^{-j 0.1 \pi(n+1)}}{2 j \sin (0.1 \pi)}\right) u[n]=\frac{\sin (0.1 \pi(n+1))}{\sin (0.1 \pi)} u[n]
$$

Problem 5.2

Consider a second-order resonator with a resonant frequency of $F_{1}=500 \mathrm{~Hz}$ and a bandwidth of $B_{1}=$ 400 Hz , sampled at $F_{s}=16000$ samples/second. What are $H(z)$ and $h[n]$?

Solution:

$$
\begin{aligned}
\omega_{1} & =\frac{2 \pi F_{1}}{F_{s}}=\frac{2 \pi 500}{16000}=\frac{\pi}{16} \\
\sigma & =\frac{1}{2} \frac{2 \pi B_{1}}{F_{s}}=\frac{\pi 400}{16000}=\frac{\pi}{40} \\
H(z) & =\frac{1}{\left(1-e^{-\sigma+j \omega_{1}} z^{-1}\right)\left(1-e^{-\sigma-j \omega_{1}} z^{-1}\right)} \\
h[n] & =\frac{1}{\sin \left(\omega_{1}\right)} e^{-\sigma n} \sin \left(\omega_{1}(n+1)\right) u[n]
\end{aligned}
$$

Problem 5.3

Suppose

$$
x[n]=\frac{1}{\sin (0.3 \pi)} e^{-0.1(n-6)} \sin (0.3 \pi(n-5)) u[n-6]
$$

Write a difference equation in terms of $y[n]$ and $x[n]$ that will result in $y[n]=\delta[n-6]$.
Solution: This $x[n]$ is the result of passing $y[n]=\delta[n-6]$ through a second-order resonator,

$$
H(z)=\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{1}^{*} z^{-1}\right)}
$$

where $p_{1}=e^{-0.1+j 0.3 \pi}$. We can get $y[n]$ back again by passing $x[n]$ through the inverse filter,

$$
A(z)=\left(1-p_{1} z^{-1}\right)\left(1-p_{1}^{*} z^{-1}\right)=1-2 e^{-0.1} \cos (0.3 \pi) z^{-1}+e^{-0.2} z^{-2}
$$

Implementing $A(z)$ as a difference equation, we get

$$
y[n]=x[n]-2 e^{-0.1} \cos (0.3 \pi) x[n-1]+e^{-0.2} x[n-2]
$$

Problem 5.4

Suppose $x[n]$ is a signal with autocorrelation coefficients $R[0]=1, R[1]=0.5$, and $R[2]=0.5$. Find coefficients a_{1} and a_{2} that will minimize \mathcal{E}, which is defined as

$$
\mathcal{E}=\sum_{n=-\infty}^{\infty}\left(x[n]-a_{1} x[n-1]-a_{2} x[n-2]\right)^{2}
$$

Solution: If we set $\frac{d \mathcal{E}}{d a_{1}}=0$ and $\frac{d \mathcal{E}}{d a_{2}}=0$, we get two equations in two unknowns, which can be written in matrix form as

$$
\left[\begin{array}{l}
R[1] \\
R[2]
\end{array}\right]=\left[\begin{array}{ll}
R[0] & R[1] \\
R[1] & R[0]
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]
$$

We solve by inverting the matrix, which gives

$$
\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right]=\frac{1}{1-(0.5)(0.5)}\left[\begin{array}{cc}
1 & -0.5 \\
-0.5 & 1
\end{array}\right]\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
1 / 3
\end{array}\right]
$$

