Lecture 23: Aliasing in Frequency: the Sampling Theorem

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

ECE 401: Signal and Image Analysis, Fall 2020
1. Review: Spectrum of continuous-time signals
2. Sampling
3. Aliasing
4. The Sampling Theorem
5. Interpolation: Discrete-to-Continuous Conversion
6. Summary
Outline

1. Review: Spectrum of continuous-time signals
2. Sampling
3. Aliasing
4. The Sampling Theorem
5. Interpolation: Discrete-to-Continuous Conversion
6. Summary
Two-sided spectrum

The spectrum of $x(t)$ is the set of frequencies, and their associated phasors,

$$\text{Spectrum } (x(t)) = \{(f_{-N}, a_{-N}), \ldots, (f_0, a_0), \ldots, (f_N, a_N)\}$$

such that

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi f_k t}$$
Fourier’s theorem

One reason the spectrum is useful is that any periodic signal can be written as a sum of cosines. Fourier’s theorem says that any \(x(t) \) that is periodic, i.e.,

\[
x(t + T_0) = x(t)
\]

can be written as

\[
x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kF_0 t}
\]

which is a special case of the spectrum for periodic signals: \(f_k = kF_0 \), and \(a_k = X_k \), and

\[
F_0 = \frac{1}{T_0}
\]
Fourier Series

- **Analysis** (finding the spectrum, given the waveform):

 \[X_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j2\pi kt/T_0} \, dt \]

- **Synthesis** (finding the waveform, given the spectrum):

 \[x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0} \]
Outline

1. Review: Spectrum of continuous-time signals
2. Sampling
3. Aliasing
4. The Sampling Theorem
5. Interpolation: Discrete-to-Continuous Conversion
6. Summary
How to sample a continuous-time signal

Suppose you have some continuous-time signal, $x(t)$, and you’d like to sample it, in order to store the sample values in a computer. The samples are collected once every $T_s = \frac{1}{F_s}$ seconds:

$$x[n] = x(t = nT_s)$$
Example: a 1kHz sine wave

For example, suppose $x(t) = \sin(2\pi 1000t)$. By sampling at $F_s = 16000$ samples/second, we get

$$x[n] = \sin \left(2\pi 1000 \frac{n}{16000} \right) = \sin(\pi n/8)$$
Outline

1. Review: Spectrum of continuous-time signals
2. Sampling
3. Aliasing
4. The Sampling Theorem
5. Interpolation: Discrete-to-Continuous Conversion
6. Summary
Can every sine wave be reconstructed from its samples?

The question immediately arises: can every sine wave be reconstructed from its samples? The answer, unfortunately, is “no.”
Can every sine wave be reconstructed from its samples?

For example, two signals $x_1(t)$ and $x_2(t)$, at 10kHz and 6kHz respectively:

$$x_1(t) = \cos(2\pi 10000 t), \quad x_2(t) = \cos(2\pi 6000 t)$$

Let’s sample them at $F_s = 16,000$ samples/second:

$$x_1[n] = \cos \left(2\pi 10000 \frac{n}{16000} \right), \quad x_2[n] = \cos \left(2\pi 6000 \frac{n}{16000} \right)$$

Simplifying a bit, we discover that $x_1[n] = x_2[n]$. We say that the 10kHz tone has been “aliased” to 6kHz:

$$x_1[n] = \cos \left(\frac{5\pi n}{4} \right) = \cos \left(\frac{3\pi n}{4} \right)$$

$$x_2[n] = \cos \left(\frac{3\pi n}{4} \right) = \cos \left(\frac{5\pi n}{4} \right)$$
Can every sine wave be reconstructed from its samples?

Continuous-time signal $x(t) = \cos(2\pi 10000t)$

Continuous-time signal $x(t) = \cos(2\pi 60000t)$

Discrete-time signal $x[n] = \cos(2\pi 10000n/16000) = \cos(5\pi n/4) = \cos(3\pi n/4)$

Discrete-time signal $x[n] = \cos(2\pi 60000n/16000) = \cos(3\pi n/4) = \cos(5\pi n/4)$
What is the highest frequency that can be reconstructed?

The highest frequency whose cosine can be exactly reconstructed from its samples is called the “Nyquist frequency,” $F_N = F_S/2$. If $x(t) = \cos(2\pi F_N t)$, then

$$x[n] = \cos \left(2\pi F_N \frac{n}{F_S} \right) = \cos(\pi n) = (-1)^n$$
If you try to sample a signal whose frequency is above Nyquist (like the one shown on the left), then it gets aliased to a frequency below Nyquist (like the one shown on the right).
Outline

1. Review: Spectrum of continuous-time signals
2. Sampling
3. Aliasing
4. The Sampling Theorem
5. Interpolation: Discrete-to-Continuous Conversion
6. Summary
Let's assume that $x(t)$ is periodic with some period T_0, therefore it has a Fourier series:

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kt/T_0} = \sum_{k=0}^{\infty} |X_k| \cos \left(\frac{2\pi kt}{T_0} + \angle X_k \right)$$
Eliminate the aliased tones

We already know that $e^{j2\pi kt/T_0}$ will be aliased if $|k|/T_0 > F_N$. So let’s assume that the signal is **band-limited**: it contains no frequency components with frequencies larger than $F_S/2$. That means that the only X_k with nonzero energy are the ones in the range $-N/2 \leq k \leq N/2$, where $N = F_S T_0$.

$$x(t) = \sum_{k=-N/2}^{N/2} X_k e^{j2\pi kt/T_0} = \sum_{k=0}^{N/2} |X_k| \cos \left(\frac{2\pi kt}{T_0} + \angle X_k \right)$$
Now let's sample that signal, at sampling frequency F_S:

$$x[n] = \sum_{k=-N/2}^{N/2} X_k e^{j2\pi kn/F_S T_0} = \sum_{k=0}^{N/2} |X_k| \cos \left(\frac{2\pi kn}{N} + \angle X_k \right)$$

So the highest digital frequency, when $k = F_S T_0/2$, is $\omega_k = \pi$. The lowest is $\omega_0 = 0$.

$$x[n] = \sum_{\omega_k=-\pi}^{\pi} X_k e^{j\omega_k n} = \sum_{\omega_k=0}^{\pi} |X_k| \cos (\omega_k n + \angle X_k)$$
Spectrum of a sampled periodic signal
The sampling theorem

As long as $-\pi \leq \omega_k \leq \pi$, we can recreate the continuous-time signal by just regenerating a continuous-time signal with the corresponding frequency:

$$f_k \left[\text{cycles} \text{second} \right] = \frac{\omega_k \left[\text{radians} \text{sample} \right]}{2\pi \left[\text{radians} \text{cycle} \right]} \times F_s \left[\text{samples} \text{second} \right]$$

$$x[n] = \cos(\omega_k n + \theta_k) \rightarrow x(t) = \cos(2\pi f_k t + \theta_k)$$
The sampling theorem

A continuous-time signal $x(t)$ with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$ if the samples are taken at a rate $F_s = 1/T_s$ that is greater than $2f_{max}$.
Outline

1. Review: Spectrum of continuous-time signals
2. Sampling
3. Aliasing
4. The Sampling Theorem
5. Interpolation: Discrete-to-Continuous Conversion
6. Summary
How can we get $x(t)$ back again?

We’ve already seen one method of getting $x(t)$ back again: we can find all of the cosine components, and re-create the corresponding cosines in continuous time.

There is an easier way. It involves multiplying each of the samples, $x[n]$, by a short-time pulse, $p(t)$, as follows:

$$y(t) = \sum_{n=\infty}^{\infty} y[n]p(t - nT_s)$$
Rectangular pulses

For example, suppose that the pulse is just a rectangle,

\[p(t) = \begin{cases}
1 & -\frac{T_s}{2} \leq t < \frac{T_s}{2} \\
0 & \text{otherwise}
\end{cases} \]
The result is a piece-wise constant interpolation of the digital signal:
Triangular pulses

The rectangular pulse has the disadvantage that $y(t)$ is discontinuous. We can eliminate the discontinuities by using a triangular pulse:

$$p(t) = \begin{cases}
1 - \frac{|t|}{T_s} & -T_s \leq t < T_s \\
0 & \text{otherwise}
\end{cases}$$
Triangular pulses = Piece-wise linear interpolation

The result is a piece-wise linear interpolation of the digital signal:
Cubic spline pulses

The triangular pulse has the disadvantage that, although \(y(t) \) is continuous, its first derivative is discontinuous. We can eliminate discontinuities in the first derivative by using a cubic-spline pulse:

\[
p(t) = \begin{cases}
1 - 2 \left(\frac{|t|}{T_s} \right)^2 + \left(\frac{|t|}{T_s} \right)^3 & -T_s \leq t < T_s \\
- \left(2 - \frac{|t|}{T_s} \right)^2 + \left(2 - \frac{|t|}{T_s} \right)^3 & T_s \leq |t| < 2T_s \\
0 & \text{otherwise}
\end{cases}
\]
Cubic spline pulses

The triangular pulse has the disadvantage that, although $y(t)$ is continuous, its first derivative is discontinuous. We can eliminate discontinuities in the first derivative by using a cubic-spline pulse:
Cubic spline pulses = Piece-wise cubic interpolation

The result is a piece-wise cubic interpolation of the digital signal:
The cubic spline has no discontinuities, and no slope discontinuities, but it still has discontinuities in its second derivative and all higher derivatives. Can we fix those? The answer: yes! The pulse we need is the inverse transform of an ideal lowpass filter, the sinc.
Sinc pulses

We can reconstruct a signal that has no discontinuities in any of its derivatives by using an ideal sinc pulse:

\[p(t) = \frac{\sin(\pi t/T_s)}{\pi t/T_s} \]
Sinc pulse = ideal bandlimited interpolation

The result is an ideal bandlimited interpolation:
Outline

1. Review: Spectrum of continuous-time signals
2. Sampling
3. Aliasing
4. The Sampling Theorem
5. Interpolation: Discrete-to-Continuous Conversion
6. Summary
Summary

A continuous-time signal $x(t)$ with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_S)$ if the samples are taken at a rate $F_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

Ideal band-limited reconstruction is achieved using sinc pulses:

$$y(t) = \sum_{n=-\infty}^{\infty} y[n] p(t - nT_s), \quad p(t) = \frac{\sin(\pi t/T_s)}{\pi t/T_s}$$