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Transforms you know

Fourier Series:

Xk =
1

T0

∫ T0

0
x(t)e

−j 2πkt
T0 dt ↔ x(t) =

∞∑
k=−∞

Xke
j 2πkt

T0

Discrete Time Fourier Transform (DTFT):

X (ω) =
∞∑

n=−∞
x [n]e−jωn ↔ x [n] =

1

2π

∫ π

−π
X (ω)e jωndω

Discrete Fourier Transform (DFT):

X [k] =
N−1∑
n=0

x [n]e−j
2πkn
N ↔ x [n] =

1

N

N−1∑
k=0

X [k]e j
2πkn
N
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DFT = Frequency samples of the DTFT of a finite-length
signal

Suppose x [n] is nonzero only for 0 ≤ n ≤ N − 1. Then

X [k] =
N−1∑
n=0

x [n]e−j
2πkn
N

=
∞∑

n=−∞
x [n]e−j

2πkn
N

= X (ωk), ωk =
2πk

N
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DFT = Discrete Fourier series of a periodic signal

Suppose x [n] is periodic, with a period of N. If it were defined in
continuous time, its Fourier series would be

Xk =
1

T0

∫ T0

0
x(t)e

−j 2πkt
T0 dt

The discrete-time Fourier series could be defined similarly, as

Xk =
1

N

N−1∑
n=0

x [n]e−j
2πkn
N

=
1

N
X [k]
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Frequency Response

Fourier Series:

y(t) = x(t) ∗ h(t) ↔ Yk = H(ωk)Xk

DTFT:

y [n] = x [n] ∗ h[n] ↔ Y (ω) = H(ω)X (ω)

DFT:
If y [n] = x [n] ∗ h[n], does that mean Y [k] = H[k]X [k]?
Only if you assume x [n] periodic. If you assume x [n] is
finite-length, then the formula fails.
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Example: y [n] = x [n] ∗ h[n]
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Example: Y [k] = H[k]X [k]
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Example: Y [k] and X [k] as Fourier series coefficients
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Circular Convolution: Motivation

The inverse transform of Y [k] = H[k]X [k] is the result of
convolving a finite-length h[n] with an infinitely periodic
x [n].

Suppose x [n] is defined to be finite-length, e.g., so you can
say that X [k] = X (ωk) (DTFT samples). Then
y [n] 6= h[n] ∗ x [n]. We need to define a new operator called
circular convolution.
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Circular Convolution: Definition

The inverse transform of H[k]X [k] is a circular convolution:

Y [k] = H[k]X [k] ↔ y [n] = h[n] ~ x [n],

where circular convolution is defined to mean:

h[n] ~ x [n] ≡
N−1∑
m=0

h [m] x [〈n −m〉N ]

in which the 〈〉N means “modulo N:”

〈n〉N =


n − N N ≤ n < 2N

n 0 ≤ n < N

n + N −N ≤ n < 0
...
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Y [k] = H[k]X [k] ↔ y [n] = h[n] ~ x [n]



Review Convolution Windows Tones Summary

Practical Issues: Can I use DFT to filter a signal?

Sometimes, it’s easier to design a filter in the frequency
domain than in the time domain.

. . . but if you multiply Y [k] = H[k]X [k], that gives
y [n] = h[n] ~ x [n], which is not the same thing as
y [n] = h[n] ∗ x [n].

Is there any way to use DFT to do filtering?
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Practical Issues: Filtering in DFT domain causes circular
convolution
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The goal: Linear convolution

When you convolve a length-L signal, x [n], with a length-M filter
h[n], you get a signal y [n] that has length M + L− 1:

In this example, x [n] has length L = 32, and h[n] has length
M = 32, so y [n] has length L + M − 1 = 63.
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How to make circular convolution = linear convolution

So in order to make circular convolution equivalent to linear
convolution, you need to use a DFT length that is at least
N ≥ M + L− 1:
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Zero-padding

This is done by just zero-padding the signals:

xZP [n] =

{
x [n] 0 ≤ n ≤ L− 1

0 L ≤ n ≤ N − 1

hZP [n] =

{
h[n] 0 ≤ n ≤ M − 1

0 M ≤ n ≤ N − 1

Then we find the N-point DFT, X [k] and H[k], multiply them
together, and inverse transform to get y [n].
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Zero-padding doesn’t change the spectrum

Suppose x [n] is of length L < N. Suppose we define

xZP [n] =

{
x [n] 0 ≤ n ≤ L− 1

0 L ≤ n ≤ N − 1

Then

XZP(ω) = X (ω)

. . . so zero-padding is the right thing to do!
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Truncating changes the spectrum

On the other hand, suppose s[n] is of length M > L. Suppose we
define

x [n] =

{
s[n] 0 ≤ n ≤ L− 1

0 L ≤ n ≤ N − 1

Then

X (ω) 6= S(ω)

and

X [k] 6= S [k]
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How does truncating change the spectrum?

Truncating, as it turns out, is just a special case of windowing:

x [n] = s[n]wR [n]

where the “rectangular window,” wR [n], is defined to be:

wR [n] =

{
1 0 ≤ n ≤ L− 1

0 otherwise



Review Convolution Windows Tones Summary

Spectrum of the rectangular window

wR [n] =

{
1 0 ≤ n ≤ L− 1

0 otherwise

The spectrum of the rectangular window is

WR(ω) =
∞∑

n=−∞
w [n]e−jωn

=
L−1∑
n=0

e−jωn

= e−jω( L−1
2 ) sin(ωL/2)

sin(ω/2)
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Spectrum of the rectangular window
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DFT of the rectangular window

The DFT of a rectangular window is just samples from the DTFT:

WR [k] = WR

(
2πk

N

)
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DFT of the rectangular window
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DFT of a length-N rectangular window

There is an interesting special case of the rectangular window.
When L = N:

WR [k] = WR

(
2πk

N

)
= e−j

2πk
N (N−1

2 ) sin
(
2πk
N

(
N
2

))
sin
(
2πk
N

(
1
2

))
=

{
1 k = 0

0 otherwise
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DFT of a length-N rectangular window
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How does truncating change the spectrum?

When we window in the time domain:

x [n] = s[n]wR [n]

that corresponds to X (ω) being a kind of smoothed, rippled
version of S(ω), with smoothing kernel of WR(ω).
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How does truncating change the spectrum?
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Hamming window

In order to reduce out-of-band ripple, we can use a Hamming
window, Hann window, or triangular window. The one with the
best spectral results is the Hamming window:

wH [n] = wR [n]

(
0.54− 0.46 cos

(
2πn

L− 1

))
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Hamming window
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Hamming window
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What is the DFT of a Pure Tone?

What is the DFT of a pure tone? Say, a cosine:

x [n] = 2 cos(ω0n) = e jω0n + e−jω0n

Actually, it’s a lot easier to compute the DFT of a complex
exponential, so let’s say “complex exponential” is a pure tone:

x [n] = e jω0n

where ω0 = 2π
T0

is the fundamental frequency, and T0 is the period.
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What is the DFT of a Pure Tone?

The DFT is a scaled version of the Fourier series. So if the cosine
has a period of T0 = N

k0
for some integer k0, then the DFT is

X [k] =

{
1 k = k0,N − k0

0 otherwise
:
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What is the DFT of a Pure Tone?

If N is not an integer multiple of T0, though, then |X [k]| gets
messy:
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What is the DFT of a Pure Tone?

Let’s solve it. If x [n] = e jω0n, then

X [k] =
N−1∑
n=0

x [n]e−j
2πkn
N

=
N−1∑
n=0

e j(ω0− 2πk
N )n

= WR

(
2πk

N
− ω0

)
So the DFT of a pure tone is just a frequency-shifted version of
the rectangular window spectrum!
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What is the DFT of a Pure Tone?

X [k] = WR

(
2πk

N
− ω0

)
If N is a multiple of T0, then the numerator is always zero, and
X [k] samples the sinc right at its zero-crossings:
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What is the DFT of a Pure Tone?

X [k] = WR

(
2πk

N
− ω0

)
If N is NOT a multiple of T0, then X [k] samples the sinc in more
complicated places:
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Summary: Circular Convolution

If you try to compute convolution by multiplying DFTs, you
get circular convolution instead of linear convolution. This
effect is sometimes called “time domain aliasing,” because the
output signal shows up at an unexpected time:

h[n] ~ x [n] ≡
N−1∑
m=0

h [m] x [〈n −m〉N ]

The way to avoid this is to zero-pad your signals prior to
taking the DFT:

xZP [n] =

{
x [n] 0 ≤ n ≤ L− 1

0 L ≤ n ≤ N − 1
hZP [n] =

{
h[n] 0 ≤ n ≤ M − 1

0 M ≤ n ≤ N − 1

Then you can compute y [n] = h[n] ∗ x [n] by using a length-N
DFT, as long as N ≥ L + M − 1.
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Summary: Windowing

If you truncate a signal in order to get it to fit into a DFT,
then you get windowing effects:

x [n] = s[n]wR [n]

where

wR [n] =

{
1 0 ≤ n ≤ L− 1

0 otherwise
↔ WR(ω) = e−jω( L−1

2 ) sin
(
ωL
2

)
sin
(
ω
2

)
The DFT of a pure tone is a frequency-shifted window
spectrum:

x [n] = e jω0n ↔ X [k] = WR

(
2πk

N
− ω0

)
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