Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary

Lecture 21: Wiener Filter

Mark Hasegawa-Johnson All content CC-SA 4.0 unless otherwise specified.

ECE 401: Signal and Image Analysis, Fall 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Review [Derivation	Uncorrelated Noise and Signal	Expectation	Summary

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

2 An Alternate Derivation of the Wiener Filter

3 Wiener Filter for Uncorrelated Noise and Signal

4 How can you compute Expected Value?

5 Summary

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	000		00	O
Outline				

1 Review: Wiener Filter

- 2 An Alternate Derivation of the Wiener Filter
- 3 Wiener Filter for Uncorrelated Noise and Signal
- 4 How can you compute Expected Value?

5 Summary

• Wiener's theorem says that the power spectrum is the DTFT of autocorrelation:

$$r_{xx}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} R_{xx}(\omega) e^{j\omega n} d\omega$$

• Parseval's theorem says that energy in the time domain is the average of the energy spectrum:

$$\sum_{n=-\infty}^{\infty} x^2[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0●00	000		00	O
Filtered	Noise			

If
$$y[n] = h[n] * x[n]$$
, $x[n]$ is any signal, then

$$r_{yy}[n] = r_{xx}[n] * h[n] * h[-n]$$
$$R_{yy}(\omega) = R_{xx}(\omega)|H(\omega)|^2$$

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
00●0	000		00	O
The W	iener Filter			

$$Y(\omega) = \frac{E[R_{sx}(\omega)]}{E[R_{xx}(\omega)]}X(\omega) = \frac{E[S(\omega)X^*(\omega)]}{E[X(\omega)X^*(\omega)]}X(\omega)$$

- The numerator, R_{sx}(ω), makes sure that y[n] is predicted from x[n] as well as possible (same correlation, E [r_{yx}[n]] = E [r_{sx}[n]]).
- The denominator, $R_{xx}(\omega)$, divides out the noise power, so that y[n] has the same expected power as s[n].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
000●	000		00	O
Power	Spectrum a	nd Cross-Power Spec	rtrum	

Remember that the **power spectrum** is defined to be the Fourier transform of the **autocorrelation**:

$$R_{xx}(\omega) = \lim_{N \to \infty} \frac{1}{N} |X(\omega)|^2$$
$$r_{xx}[n] = \lim_{N \to \infty} \frac{1}{N} x[n] * x[-n]$$

In the same way, we can define the **cross-power spectrum** to be the Fourier transform of the **cross-correlation**:

$$R_{sx}(\omega) = \lim_{N \to \infty} \frac{1}{N} S(\omega) X^*(\omega)$$
$$r_{sx}[n] = \lim_{N \to \infty} \frac{1}{N} s[n] * x[-n]$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	000		00	O
Outline				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 Review: Wiener Filter

2 An Alternate Derivation of the Wiener Filter

3 Wiener Filter for Uncorrelated Noise and Signal

4 How can you compute Expected Value?

5 Summary

The goal is to design a filter h[n] so that

y[n] = x[n] * h[n]

in order to make y[n] as much like s[n] as possible. In other words, let's minimize the mean-squared error:

$$\mathcal{E} = \sum_{n=-\infty}^{\infty} E\left[(s[n] - y[n])^2\right]$$

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	○●○		00	O
Use Pa	arseval's The	oreml		

In order to turn the convolutions into multiplications, let's use Parseval's theorem!

$$\begin{split} \mathcal{E} &= \sum_{n=-\infty}^{\infty} E\left[(s[n] - y[n])^2 \right] \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} E\left[|S(\omega) - Y(\omega)|^2 \right] d\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} E\left[|S(\omega) - H(\omega)X(\omega)|^2 \right] d\omega \\ \mathcal{E} &= \frac{1}{2\pi} \int_{-\pi}^{\pi} (E\left[S(\omega)S^*(\omega) \right] - H(\omega)E\left[X(\omega)S^*(\omega) \right] \\ &- E\left[S(\omega)X^*(\omega) \right] H^*(\omega) + H(\omega)E\left[X(\omega)X^*(\omega) \right] H^*(\omega)) d\omega \end{split}$$

Now let's try to find the minimum, by setting

$$\frac{d\mathcal{E}}{dH(\omega)} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	00●		00	O
Differe	ntiate and S	Solve!		

Differentiating by $H(\omega)$ (and pretending that $H^*(\omega)$ stays constant), we get

$$\frac{d\mathcal{E}}{dH(\omega)} = -E\left[X(\omega)S^*(\omega)\right]d\omega + E\left[X(\omega)X^*(\omega)\right]H^*(\omega)d\omega$$

So we can set $\frac{d\mathcal{E}}{dH(\omega)} = 0$ if we choose

$$H^*(\omega) = rac{E\left[X(\omega)S^*(\omega)
ight]}{E\left[|X(\omega)|^2
ight]}$$

or, equivalently,

$$H(\omega) = \frac{E\left[S(\omega)X^*(\omega)\right]}{E\left[|X(\omega)|^2\right]} = \frac{E\left[R_{sx}(\omega)\right]}{E\left[R_{xx}(\omega)\right]}$$

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	000		00	O
Outline				

- 1 Review: Wiener Filter
- 2 An Alternate Derivation of the Wiener Filter

3 Wiener Filter for Uncorrelated Noise and Signal

4 How can you compute Expected Value?

5 Summary

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	000		00	O
What is .	X made of	?		

So here's the Wiener filter:

$$H(\omega) = \frac{E[S(\omega)X^*(\omega)]}{E[|X(\omega)|^2]}$$

But now let's break it down a little. What's X? That's right, it's S + V — signal plus noise.

$$H(\omega) = \frac{E[S(\omega)(S^*(\omega) + V^*(\omega))]}{E[|X(\omega)|^2]}$$
$$= \frac{E[|S(\omega)|^2] + E[S(\omega)V^*(\omega)]}{E[|X(\omega)|^2]}$$
$$= \frac{E[R_{ss}(\omega)] + E[R_{sv}(\omega)]}{E[R_{xx}(\omega)]}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	000		00	O
What if	S and V a	re uncorrelated?		

In most real-world situations, the signal and noise are uncorrelated, so we can write $% \left({{{\mathbf{r}}_{\mathrm{s}}}^{\mathrm{T}}} \right)$

$$E[S(\omega)V^*(\omega)] = E[S(\omega)]E[V^*(\omega)] = 0$$

 Review
 Derivation
 Uncorrelated Noise and Signal
 Expectation
 Summary

 0000
 00
 00
 00
 00
 00

Similarly, if S and V are uncorrelated,

$$E [|X(\omega)|^{2}] = E [|S(\omega) + V(\omega)|^{2}]$$
$$= E [|S(\omega)|^{2}] + E [S(\omega)V^{*}(\omega)] + E [S^{*}(\omega)V(\omega)] + E [|V(\omega)|^{2}]$$
$$= E [|S(\omega)|^{2}] + E [|V(\omega)|^{2}]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
		000000		

Wiener Filter in the General Case

In the general case, the Wiener Filter is

$$H(\omega) = \frac{E[R_{sx}(\omega)]}{E[R_{xx}(\omega)]}$$

$$= \frac{E\left[R_{ss}(\omega)\right] + E\left[R_{sv}(\omega)\right]}{E\left[R_{ss}(\omega)\right] - E\left[R_{sv}(\omega)\right] - E\left[R_{vs}(\omega)\right] + E\left[R_{vv}(\omega)\right]}$$

Wiener Filter for Uncorrelated Noise

If noise and signal are uncorrelated,

$$H(\omega) = \frac{E[R_{ss}(\omega)]}{E[R_{xx}(\omega)]}$$
$$= \frac{E[R_{ss}(\omega)]}{E[R_{ss}(\omega)] + E[R_{vv}(\omega)]}$$

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	000	0000●0	00	O
Wiener	Filter in th	e General Case		

$$H(\omega) = \frac{E[R_{sx}(\omega)]}{E[R_{xx}(\omega)]}$$

- In the general case, the numerator captures the correlation between the **noisy signal**, x[n], and the desired clean signal s[n].
- The idea is to give y[n] the same correlation. We can't make y[n] equal s[n] exactly, but we can give it the same statistical properties as s[n]: specifically, make it correlate with x[n] the same way.

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	000		00	O
Wiener	Filter for C	Correlated Noise		

$$H(\omega) = \frac{E[R_{ss}(\omega)]}{E[R_{xx}(\omega)]}$$

• If *s*[*n*] and *v*[*n*] are uncorrelated, then the correlation between the clean and noisy signals is exactly equal to the autocorrelation of the clean signal:

$$E\left[r_{sx}[n]\right] = E\left[r_{ss}[n]\right]$$

So in that case, the Wiener filter is just exactly the desired, clean power spectrum, E [R_{ss}(ω)], divided by the given, noisy power spectrum E [R_{xx}(ω)],

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	000		00	O
Outline				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 Review: Wiener Filter
- 2 An Alternate Derivation of the Wiener Filter
- 3 Wiener Filter for Uncorrelated Noise and Signal
- 4 How can you compute Expected Value?

5 Summary

0000	000	000000	•0	0
11		auto expected value?		

How can you compute expected value?

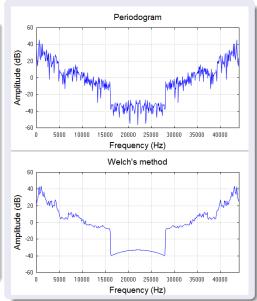
Finally: we need to somehow estimate the expected power spectra, $E[R_{ss}(\omega)]$ and $E[R_{xx}(\omega)]$. How can we do that?

- Generative model: if you know where the signal came from, you might have a pencil-and-paper model of its statistics, from which you can estimate $R_{ss}(\omega)$.
- **Multiple experiments:** If you have the luxury of running the experiment 1000 times, that's actually the best way to do it.
- Welch's method: chop the signal into a large number of small frames, computing $|X(\omega)|^2$ from each small frame, and then average. As long as the signal statistics don't change over time, this method works well.

ReviewDerivationUncorrelated Noise and SignalExpectationSummary000000000000000

Pros and Cons of Welch's Method

- Con: Because each |X(ω)|² is being computed from a shorter window, you get less spectral resolution.
- Pro: Actually, less spectral resolution is usually a good thing. Micro-variations in the spectrum are probably noise, and should probably be smoothed away.



Public domain image, 2016, Bob K, https://commons.wikimedia.org/wiki/File: Comparison_of_periodogram_and_Welch_methods_of_spectral_density_estimation.png

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	000		00	O
Outline				

- 1 Review: Wiener Filter
- 2 An Alternate Derivation of the Wiener Filter
- 3 Wiener Filter for Uncorrelated Noise and Signal
- 4 How can you compute Expected Value?

Review	Derivation	Uncorrelated Noise and Signal	Expectation	Summary
0000	000		00	•
Summa	ary			

• Wiener Filter in the General Case:

$$H(\omega) = \frac{E[R_{sx}(\omega)]}{E[R_{xx}(\omega)]}$$

• Wiener Filter for Uncorrelated Noise:

$$H(\omega) = \frac{E[R_{ss}(\omega)]}{E[R_{xx}(\omega)]}$$

• Welch's Method: chop the signal into frames, compute $|X(\omega)|^2$ for each frame, and then average them.