
Expectation Review Wiener Filter Summary

Lecture 20: Wiener Filter

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

ECE 401: Signal and Image Analysis, Fall 2020

https://creativecommons.org/licenses/by-sa/4.0/


Expectation Review Wiener Filter Summary

1 Averaging and Expectation

2 Review: Noise

3 Wiener Filter

4 Summary



Expectation Review Wiener Filter Summary

Outline

1 Averaging and Expectation

2 Review: Noise

3 Wiener Filter

4 Summary



Expectation Review Wiener Filter Summary

Three Types of Averages

We’ve been using three different types of averaging:

Expectation = Averaging across multiple runs of the
same experiment. If you run the random number generator
many times, to generate many different signals x [n], and then
you compute the autocorrelation rxx [n] for each of them, then
the average, across all of the experiments, converges to
E [rxx [n]].

Averaging across time.

Averaging across frequency.
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Three Types of Averages

Parseval’s theorem says the total energy across time is the same as
the average energy across frequency. That’s true for either actual
energy or expected energy:

∞∑
n=−∞

x2[n] =
1

2π

∫ π

−π
|X (ω)|2dω

E

[ ∞∑
n=−∞

x2[n]

]
=

1

2π

∫ π

−π
E
[
|X (ω)|2

]
dω
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Things to know about expectation

There are only three things you need to know about expectation:

1 Definition: Expectation is the average across multiple runs of
the same experiment.

2 Linearity: Expectation is linear.

3 Correlation: The expected product of two random variables is
their correlation. If the expected product is the product of
the expected values, the variables are said to be uncorrelated.
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Expectation is Linear

The main thing to know about expectation is that it’s linear. If x
and y are random variables, and a and b are deterministic (not
random), then

E [ax + by ] = aE [x ] + bE [y ]
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Correlated vs. Uncorrelated Signals

Uncorrelated random variables are variables x and y such that

Uncorrelated RVs: E [xy ] = E [x ]E [y ]

That doesn’t work for correlated random variables:

Correlated RVs: E [xy ] 6= E [x ]E [y ]
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Wiener’s Theorem and Parseval’s Theorem

Wiener’s theorem says that the power spectrum is the DTFT
of autocorrelation:

rxx [n] =
1

2π

∫ π

−π
Rxx(ω)e jωndω

Parseval’s theorem says that average power in the time
domain is the same as average power in the frequency domain:

rxx [0] =
1

2π

∫ π

−π
Rxx(ω)dω
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Filtered Noise

If y [n] = h[n] ∗ x [n], x [n] is any noise signal, then

ryy [n] = rxx [n] ∗ h[n] ∗ h[−n]

Ryy (ω) = Rxx(ω)|H(ω)|2



Expectation Review Wiener Filter Summary

White Noise and Colored Noise

If x [n] is zero-mean unit variance white noise, and
y [n] = h[n] ∗ x [n], then

E [rxx [n]] = δ[n]

E [Rxx(ω)] = 1

E [ryy [n]] = h[n] ∗ h[−n]

E [Ryy (ω)] = |H(ω)|2
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Signals in Noise

Suppose you have
x [n] = s[n] + v [n]

s[n] is the signal — the part you want to keep.

v [n] is the noise — the part you want to get rid of. We call it
v [n] because n[n] would be wierd, and because v looks kind of
like the Greek letter ν, which sounds like n.
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Task Statement

The goal is to design a filter h[n] so that

y [n] = x [n] ∗ h[n]

in order to make y [n] as much like s[n] as possible. In other words,
let’s minimize the mean-squared error:

E =
∞∑

n=−∞
(s[n]− y [n])2
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The Solution, if S and V are Known

If s[n] and v [n] are known, then we can solve the problem exactly.
We want Y (ω) = S(ω), where

Y (ω) = H(ω)X (ω),

so we just need

H(ω) =
S(ω)

X (ω)
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If S and V Not Known: This Solution Fails Badly!

If s[n] and v [n] are NOT known, can we make
Y (ω) = E [S(ω)|X (ω)] by just solving

Y (ω) = H(ω)E [X (ω)]?

Unfortunately, no, because x [n] = s[n] + v [n] is a zero-mean
random signal, so

E [X (ω)] = 0

So dividing by E [X (ω)] is kind of a bad idea.
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The Solution if S and V not known

OK, if S and V are unknown, here’s a trick we can do to make the
equation solvable:

S(ω) = H(ω)X (ω)

S(ω)X ∗(ω) = H(ω)X (ω)X ∗(ω)

E [S(ω)X ∗(ω)] = H(ω)E [X (ω)X ∗(ω)]

which gives us

H(ω) =
E [S(ω)X ∗(ω)]

E [X (ω)X ∗(ω)]
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Power Spectrum and Cross-Power Spectrum

Remember that the power spectrum is defined to be the Fourier
transform of the autocorrelation:

Rxx(ω) = lim
N→∞

1

N
|X (ω)|2

rxx [n] = lim
N→∞

1

N
x [n] ∗ x [−n]

In the same way, we can define the cross-power spectrum to be
the Fourier transform of the cross-correlation:

Rsx(ω) = lim
N→∞

1

N
S(ω)X ∗(ω)

rsx [n] = lim
N→∞

1

N
s[n] ∗ x [−n]
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The Wiener Filter

The Wiener filter is given by

H(ω) =
E [S(ω)X ∗(ω)]

E [|X (ω)|2]

=
E [Rsx(ω)]

E [Rxx(ω)]

This creates a signal y [n] that has the same statistical properties
as the desired signal s[n]. Same expected energy, same expected
correlation with x [n], etc.
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The Wiener Filter

Y (ω) =
E [Rsx(ω)]

E [Rxx(ω)]
X (ω) =

E [S(ω)X ∗(ω)]

E [X (ω)X ∗(ω)]
X (ω)

The numerator, Rsx(ω), makes sure that y [n] is predicted
from x [n] as well as possible (same correlation,
E [ryx [n]] = E [rsx [n]]).

The denominator, Rxx(ω), divides out the noise power, so that
y [n] has the same expected power as s[n].



Expectation Review Wiener Filter Summary

Outline

1 Averaging and Expectation

2 Review: Noise

3 Wiener Filter

4 Summary



Expectation Review Wiener Filter Summary

Summary

Sorry no demos today! I’ll try to have some on Thursday. Today
we just had two key concepts: Wiener filter and cross-power
spectrum:

H(ω) =
Rsx(ω)

Rxx(ω)

Rsx(ω) = lim
N→∞

1

N
S(ω)X ∗(ω)

rsx [n] = lim
N→∞

1

N
s[n] ∗ x [−n]
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