Expectation	Review	Wiener Filter	Summary

Lecture 20: Wiener Filter

Mark Hasegawa-Johnson All content CC-SA 4.0 unless otherwise specified.

ECE 401: Signal and Image Analysis, Fall 2020

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Expectation	Review	Wiener Filter	Summary

Expectation	Review	Wiener Filter	Summary
Outline			

2 Review: Noise

3 Wiener Filter

Expectation	Review	Wiener Filter	Summary
•000	000	0000000	O
Three Types of	Averages		

We've been using three different types of averaging:

Expectation = Averaging across multiple runs of the same experiment. If you run the random number generator many times, to generate many different signals x[n], and then you compute the autocorrelation r_{xx}[n] for each of them, then the average, across all of the experiments, converges to E[r_{xx}[n]].

- Averaging across time.
- Averaging across frequency.

Expectation	Review	Wiener Filter	Summary
0●00	000	00000000	O
Three Types of	Averages		

Parseval's theorem says the total energy across time is the same as the average energy across frequency. That's true for either **actual energy** or **expected energy**:

$$\sum_{n=-\infty}^{\infty} x^{2}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^{2} d\omega$$
$$E\left[\sum_{n=-\infty}^{\infty} x^{2}[n]\right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} E\left[|X(\omega)|^{2}\right] d\omega$$

Expectation	Review	Wiener Filter	Summary
00●0	000	00000000	O
Things to kn	ow about expec	tation	

There are only three things you need to know about expectation:

- O Definition: Expectation is the average across multiple runs of the same experiment.
- **2** Linearity: Expectation is linear.
- Correlation: The expected product of two random variables is their correlation. If the expected product is the product of the expected values, the variables are said to be uncorrelated.

Expectation	Review	Wiener Filter	Summary
0000			
Expectation i	s Linear		

The main thing to know about expectation is that it's linear. If x and y are random variables, and a and b are deterministic (not random), then

$$E\left[ax+by\right] = aE\left[x\right] + bE\left[y\right]$$

	000	0000000	0
Correlated vs.	Uncorrelated	Signals	

Uncorrelated random variables are variables x and y such that

Uncorrelated RVs: E[xy] = E[x] E[y]

That doesn't work for correlated random variables:

Correlated RVs: $E[xy] \neq E[x] E[y]$

Expectation	Review	Wiener Filter	Summary
0000	000	0000000	
Outline			

2 Review: Noise

 Wiener's theorem says that the power spectrum is the DTFT of autocorrelation:

$$r_{xx}[n] = rac{1}{2\pi} \int_{-\pi}^{\pi} R_{xx}(\omega) e^{j\omega n} d\omega$$

• Parseval's theorem says that average power in the time domain is the same as average power in the frequency domain:

$$r_{xx}[0] = rac{1}{2\pi} \int_{-\pi}^{\pi} R_{xx}(\omega) d\omega$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Expectation	Review	Wiener Filter	Summary
	000		
Eiltored Naice			
THERED NOISE			

If
$$y[n] = h[n] * x[n]$$
, $x[n]$ is any noise signal, then

$$r_{yy}[n] = r_{xx}[n] * h[n] * h[-n]$$
$$R_{yy}(\omega) = R_{xx}(\omega)|H(\omega)|^2$$

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Expectation	Review	Wiener Filter	Summary
0000	00●	00000000	O
White Noise and O	Colored Noise		

If x[n] is zero-mean unit variance white noise, and y[n] = h[n] * x[n], then

$$E[r_{xx}[n]] = \delta[n]$$

$$E[R_{xx}(\omega)] = 1$$

$$E[r_{yy}[n]] = h[n] * h[-n]$$

$$E[R_{yy}(\omega)] = |H(\omega)|^2$$

Expectation	Review	Wiener Filter	Summary
Outling			

2 Review: Noise

3 Wiener Filter

Expectation	Review	Wiener Filter	Summary
0000	000	●0000000	O
Signals in Noise			

Suppose you have

$$x[n] = s[n] + v[n]$$

- *s*[*n*] is the signal the part you want to keep.
- v[n] is the noise the part you want to get rid of. We call it v[n] because n[n] would be wierd, and because v looks kind of like the Greek letter ν, which sounds like n.

Expectation	Review	Wiener Filter	Summary
0000	000	0●000000	O
Task Statement			

The goal is to design a filter h[n] so that

y[n] = x[n] * h[n]

in order to make y[n] as much like s[n] as possible. In other words, let's minimize the mean-squared error:

$$\mathcal{E} = \sum_{n=-\infty}^{\infty} (s[n] - y[n])^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Expectation	Review	Wiener Filter	Summary
0000	000	00●00000	O
The Solution, if S	and V are Know	/n	

If s[n] and v[n] are known, then we can solve the problem exactly. We want $Y(\omega) = S(\omega)$, where

$$Y(\omega) = H(\omega)X(\omega),$$

so we just need

$$H(\omega) = rac{S(\omega)}{X(\omega)}$$

If s[n] and v[n] are NOT known, can we make $Y(\omega) = E[S(\omega)|X(\omega)]$ by just solving

 $Y(\omega) = H(\omega)E[X(\omega)]?$

Unfortunately, no, because x[n] = s[n] + v[n] is a zero-mean random signal, so

$$E[X(\omega)] = 0$$

So dividing by $E[X(\omega)]$ is kind of a bad idea.

Expectation	Review	Wiener Filter	Summary
0000	000	00000000	O
The Solution if S	and V not know	n	

OK, if S and V are unknown, here's a trick we can do to make the equation solvable:

$$S(\omega) = H(\omega)X(\omega)$$

$$S(\omega)X^*(\omega) = H(\omega)X(\omega)X^*(\omega)$$

$$E[S(\omega)X^*(\omega)] = H(\omega)E[X(\omega)X^*(\omega)]$$

which gives us

$$H(\omega) = \frac{E[S(\omega)X^*(\omega)]}{E[X(\omega)X^*(\omega)]}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

0000	000	00000000	0
Power Spectrum a	nd Cross-Power ⁹	Spectrum	

Remember that the **power spectrum** is defined to be the Fourier transform of the **autocorrelation**:

$$R_{xx}(\omega) = \lim_{N \to \infty} \frac{1}{N} |X(\omega)|^2$$
$$r_{xx}[n] = \lim_{N \to \infty} \frac{1}{N} x[n] * x[-n]$$

In the same way, we can define the **cross-power spectrum** to be the Fourier transform of the **cross-correlation**:

$$R_{sx}(\omega) = \lim_{N \to \infty} \frac{1}{N} S(\omega) X^*(\omega)$$
$$r_{sx}[n] = \lim_{N \to \infty} \frac{1}{N} s[n] * x[-n]$$

Expectation	Review	Wiener Filter	Summary
0000	000	000000●0	O
The Wiener Filter			

The Wiener filter is given by

$$H(\omega) = \frac{E[S(\omega)X^*(\omega)]}{E[|X(\omega)|^2]}$$
$$= \frac{E[R_{sx}(\omega)]}{E[R_{xx}(\omega)]}$$

This creates a signal y[n] that has the same statistical properties as the desired signal s[n]. Same expected energy, same expected correlation with x[n], etc.

0000	000	0000000	0	
The Wiener Filter				

$$Y(\omega) = \frac{E[R_{sx}(\omega)]}{E[R_{xx}(\omega)]}X(\omega) = \frac{E[S(\omega)X^*(\omega)]}{E[X(\omega)X^*(\omega)]}X(\omega)$$

- The numerator, R_{sx}(ω), makes sure that y[n] is predicted from x[n] as well as possible (same correlation, E [r_{yx}[n]] = E [r_{sx}[n]]).
- The denominator, $R_{xx}(\omega)$, divides out the noise power, so that y[n] has the same expected power as s[n].

Expectation	Review	Wiener Filter	Summary
0000	000	0000000	O
Outline			

Averaging and Expectation

2 Review: Noise

3 Wiener Filter

Expectation	Review	Wiener Filter	Summary
0000	000	00000000	•
Summary			

Sorry no demos today! I'll try to have some on Thursday. Today we just had two key concepts: Wiener filter and cross-power spectrum:

$$H(\omega) = \frac{R_{sx}(\omega)}{R_{xx}(\omega)}$$

$$R_{sx}(\omega) = \lim_{N \to \infty} \frac{1}{N} S(\omega) X^*(\omega)$$
$$r_{sx}[n] = \lim_{N \to \infty} \frac{1}{N} s[n] * x[-n]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?