Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary

Lecture 19: Autocorrelation

Mark Hasegawa-Johnson All content CC-SA 4.0 unless otherwise specified.

ECE 401: Signal and Image Analysis, Fall 2020

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary

- 2 Autocorrelation
- 3 Autocorrelation of Filtered Noise
- Power Spectrum of Filtered Noise
- 5 Parseval's Theorem

6 Example

Review 0000000	Autocorrelation	Autocorrelation	Spectrum 00000	Parseval 000	Example 00000000	Summary 000
Outline	2					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 Review: Power Spectrum
- 2 Autocorrelation
- 3 Autocorrelation of Filtered Noise
- 4 Power Spectrum of Filtered Noise
- 5 Parseval's Theorem
- 6 Example
- 7 Summary

- The energy spectrum of a random noise signal has the DTFT form |X(ω)|², or the DFT form |X[k]|².
- The easiest form of Parseval's theorem to memorize is the DTFT energy spectrum form:

$$\sum_{n=-\infty}^{\infty} x^2[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$$

• The DFT energy spectrum form is similar, but over a finite duration:

$$\sum_{n=0}^{N-1} x^2[n] = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

Energy of an infinite-length signal might be infinite. Wiener defined the **power spectrum** in order to solve that problem:

$$R_{\scriptscriptstyle XX}(\omega) = \lim_{N o \infty} rac{1}{N} |X(\omega)|^2$$

where $X(\omega)$ is computed from a window of length N samples. The DTFT power spectrum form of Parseval's theorem is

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=-(N-1)/2}^{(N-1)/2} x^2[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} R_{xx}(\omega) d\omega$$

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
00●0000		000000000000	00000	000	00000000	000
White N	Voise					

 White noise is a type of noise whose samples are uncorrelated (E[x[n]x[m]] = E[x[n]]E[x[m]], unless n = m). If it is also zero mean and unit variance, then

$$E[x[n]x[m]] = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases}$$

• The Fourier transform of any zero-mean random signal is, itself, a zero-mean random variable:

$$E[X(\omega)] = 0$$

• The power spectrum is also a random variable, but its expected value is not zero. The expected power spectrum of white noise is flat, like white light:

$$E[R_{xx}(\omega)] = E\left[\frac{1}{N}|X(\omega)|^2\right] = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
00000●0	00000000		00000	000	00000000	000
Colored	Noise					

- Most colored noise signals are well modeled as filtered white noise, i.e., y[n] = h[n] * x[n]. The filtering means that the samples of y[n] are correlated with one another.
- If x[n] is zero-mean, then so is y[n], and so is $Y(\omega)$:

$$E[Y(\omega)] = 0$$

• The expected power spectrum is $|H(\omega)|^2$:

$$E[R_{yy}(\omega)] = E\left[\frac{1}{N}|Y(\omega)|^2\right] = |H(\omega)|^2$$

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
000000●	00000000		00000	000	00000000	000
Examp	le: Filterec	Noise				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Review 0000000	Autocorrelation	Autocorrelation	Spectrum 00000	Parseval 000	Example 00000000	Summary 000
Outline						

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 Review: Power Spectrum
- 2 Autocorrelation
- 3 Autocorrelation of Filtered Noise
- 4 Power Spectrum of Filtered Noise
- 5 Parseval's Theorem
- 6 Example
- 7 Summary

Review Autocorrelation Autocorrelation Spectrum Parseval Example Summary 0000000 000000000 0000 0000 0000 000 000 Finite-Duration Power Spectrum

In practice, we will very often compute the power spectrum from a finite-length window:

$$R_{ ext{xx}}(\omega) = rac{1}{N} |X(\omega)|^2, \quad R_{ ext{xx}}[k] = rac{1}{N} |X[k]|^2$$

where $X(\omega)$ is computed from a window of length N samples. The DTFT power spectrum form of Parseval's theorem is then

$$\frac{1}{N}\sum_{n=0}^{N-1} x^2[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} R_{xx}(\omega) d\omega = \frac{1}{N} \sum_{k=0}^{N} R_{xx}[k]$$

Review Autocorrelation Autocorrelation Spectrum Parseval Example Summary 0000000 0000000000 0000 0000 0000 0000 0000 Inverse DTFT of the Power Spectrum 00000000000 0000 0000 0000

Since the power spectrum of noise is MUCH more useful than the expected Fourier transform, let's see what the inverse Fourier transform of the power spectrum is. Let's call $R_{xx}(\omega)$ the power spectrum, and $r_{xx}[n]$ its inverse DTFT.

$$R_{\scriptscriptstyle XX}(\omega) = rac{1}{N} |X(\omega)|^2 = rac{1}{N} X(\omega) X^*(\omega)$$

where $X^*(\omega)$ means complex conjugate. Since multiplying the DTFT means convolution in the time domain, we know that

$$r_{xx}[n] = \frac{1}{N}x[n] * z[n]$$

where z[n] is the inverse transform of $X^*(\omega)$ (we haven't figured out what that is, yet).

So what's the inverse DFT of $X^*(\omega)$? If we assume that x[n] is real, we get that

$$X^{*}(\omega) = \left(\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right)^{*}$$
$$= \sum_{n=-\infty}^{\infty} x[n]e^{j\omega n}$$
$$= \sum_{m=-\infty}^{\infty} x[-m]e^{-j\omega m}$$

So if x[n] is real, then the inverse DTFT of $X^*(\omega)$ is x[-n]!

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000		00000	000	00000000	000
Autoco	rrelation					

The power spectrum, of an N-sample finite-length signal, is

$$R_{\scriptscriptstyle XX}(\omega) = rac{1}{N} |X(\omega)|^2$$

Its inverse Fourier transform is the autocorrelation,

$$r_{xx}[n] = \frac{1}{N}x[n] * x[-n] = \frac{1}{N}\sum_{m=-\infty}^{\infty}x[m]x[m-n]$$

This relationship, $r_{xx}[n] \leftrightarrow R_{xx}(\omega)$, is called Wiener's theorem, named after Norbert Wiener, the inventor of cybernetics.

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000	000000000000	00000	000	00000000	000
Fxamn	le Autoco	rrelation of	White I	Noise		

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

....

Review
occocoAutocorrelation
occocoAutocorrelation
occocoSpectrum
occocoParseval
occocoExample
occocoSummary
occocoA warning about python

Notice, on the last slide, I defined autocorrelation as

$$r_{xx}[n] = \frac{1}{N}x[n] * x[-n] = \frac{1}{N}\sum_{m=-\infty}^{\infty}x[m]x[m-n]$$

Python defines an "energy version" of autocorrelation, instead of the "power version" shown above, i.e., np.correlate computes:

$$r_{\text{python}}[n] = \sum_{m=-\infty}^{\infty} x[m]x[m-n]$$

The difference is just a constant factor (N), so it usually isn't important. But sometimes you'll need to be aware of it.

- Notice that, just as the power spectrum is a random variable, the autocorrelation is also a random variable.
- The autocorrelation is the average of *N* consecutive products, thus

$$E[r_{xx}[n]] = E\left[\frac{1}{N}\sum_{m=0}^{N-1} x[m]x[m-n]\right] = E[x[m]x[m-n]]$$

• The expected autocorrelation is related to the covariance and the mean:

$$E[r_{xx}[n]] = Cov(x[m], x[m - n]) + E[x[m]] E[x[m - n]]$$

• If x[n] is zero-mean, that means

$$E[r[n]] = \operatorname{Cov}(x[m], x[m-n])$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

If x[n] is zero-mean white noise, with a variance of σ^2 , then

$$E[r_{xx}[n]] = E[x[m]x[m-n]] = \begin{cases} \sigma^2 & n = 0\\ 0 & \text{otherwise} \end{cases}$$

We can write

$$E[r[n]] = \sigma^2 \delta[n]$$

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000		00000	000	00000000	000
Outline	9					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 Review: Power Spectrum
- 2 Autocorrelation
- 3 Autocorrelation of Filtered Noise
- 4 Power Spectrum of Filtered Noise
- 5 Parseval's Theorem
- 6 Example
- 7 Summary

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000		••••••	00000	000	00000000	000
Filtered	Noise					

What happens when we filter noise? Suppose that x[n] is zero-mean white noise, and

$$y[n] = h[n] * x[n]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is y[n]?

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000	00000000000	00000	000	00000000	000
Exampl	e: Filterin	g of White	Noise			

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000	00000000000	00000	000	00000000	000
Filtered	Noise					

$$y[n] = h[n] * x[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

- *y*[*n*] is the sum of zero-mean random variables, so it's also zero-mean.
- y[n] = h[0]x[n] + other stuff, and y[n+1] = h[1]x[n] + other stuff. So obviously, y[n] and y[n+1] are not uncorrelated. So y[n] is not white noise.

What kind of noise is it?

First, let's find its variance. Since x[n] and x[n+1] are uncorrelated, we can write

$$\sigma_y^2 = \sum_{m=-\infty}^{\infty} h^2[m] \operatorname{Var}(x[n-m])$$
$$= \sigma_x^2 \sum_{m=-\infty}^{\infty} h^2[m]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Second, let's find its autocorrelation. Let's define $r_{xx}[n] = \frac{1}{N}x[n] * x[-n]$. Then

-

$$r_{yy}[n] = \frac{1}{N} y[n] * y[-n]$$

= $\frac{1}{N} (x[n] * h[n]) * (x[-n] * h[-n])$
= $\frac{1}{N} x[n] * x[-n] * h[n] * h[-n]$
= $r_{xx}[n] * h[n] * h[-n]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000	00000000000	00000	000	00000000	000
Exampl	e: Autocc	orrelation of	Colored	Noise		

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

$$r_{yy}[n] = r_{xx}[n] * h[n] * h[-n]$$

Expectation is linear, and convolution is linear, so

$$E[r_{yy}[n]] = E[r_{xx}[n]] * h[n] * h[-n]$$

x[n] is zero-mean white noise if and only if its autocorrelation is a delta function:

$$E\left[r_{xx}[n]\right] = \sigma_x^2 \delta[n]$$

If y[n] = h[n] * x[n], and x[n] is zero-mean white noise, then

$$E[r_{yy}[n]] = \sigma_x^2(h[n] * h[-n])$$

In other words, x[n] contributes only its energy (σ_x^2) . h[n] contributes the correlation between neighboring samples.

Example	e: Expecte	ed Autocorr	elation o	of Color	ed Noise	
Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000		000000000000	00000	000	00000000	000

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000	0000000000000	00000	000	00000000	000
Exampl	e					

Here's an example. The white noise signal on the top (x[n]) is convolved with the bandpass filter in the middle (h[n]) to produce the green-noise signal on the bottom (y[n]). Notice that y[n] is random, but correlated.

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000	000000000000	00000	000	00000000	000
Exampl	e					

Here's another example. The white noise signal on the left (x[n]) is convolved with an ideal lowpass filter, with a cutoff at $\pi/2$, to create the pink-noise signal on the right (y[n]). Notice that y[n] is random, but correlated.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000		00000000000	00000	000	00000000	000
Examp	le					

Here's a third example. The white noise signal on the left (x[n]) is convolved with an ideal highpass filter, with a cutoff at $\pi/2$, to create the blue-noise signal on the right (y[n]). Here, it's a lot less obvious that the samples of y[n] are correlated with one another, but they are: in fact, they are **negatively correlated**. If y[n] > 0, then y[n+1] < 0 with a probability greater than 50%.

Review 0000000	Autocorrelation 00000000	Autocorrelation	Spectrum	Parseval 000	Example 00000000	Summary 000
Outline	2					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 Review: Power Spectrum
- 2 Autocorrelation
- 3 Autocorrelation of Filtered Noise
- Power Spectrum of Filtered Noise
- 5 Parseval's Theorem
- 6 Example
- 7 Summary

So we have $r_{yy}[n] = r_{xx}[n] * h[n] * h[-n]$. What about the power spectrum?

$$R_{yy}(\omega) = \mathcal{F} \{ r_{yy}[n] \}$$

= $\mathcal{F} \{ r_{xx}[n] * h[n] * h[-n] \}$
= $R_{xx}(\omega) |H(\omega)|^2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000		0●000	000	00000000	000
Exampl	e					

Here's an example. The white noise signal on the top $(|X[k]|^2)$ is multiplied by the bandpass filter in the middle $(|H[k]|^2)$ to produce the green-noise signal on the bottom $(|Y[k]|^2 = |X[k]|^2|H[k]|^2)$.

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000	000000000000	00●00	000	00000000	000
Units C	onversion					

The DTFT version of Parseval's theorem, assuming a finite window of length N samples, is

$$\frac{1}{N}\sum_{n}x^{2}[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}R_{xx}(\omega)d\omega$$

Let's consider converting units to Hertz. Remember that $\omega = \frac{2\pi f}{F_s}$, where F_s is the sampling frequency, so $d\omega = \frac{2\pi}{F_s}df$, and we get that

$$\frac{1}{N}\sum_{n}x^{2}[n] = \frac{1}{F_{s}}\int_{-F_{s}/2}^{F_{s}/2}R_{xx}\left(\frac{2\pi f}{F_{s}}\right)df$$

So we can use $R_{xx}\left(\frac{2\pi f}{F_s}\right)$ as if it were a power spectrum in continuous time, at least for $-\frac{F_s}{2} < f < \frac{F_s}{2}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Review 0000000	Autocorrelation 00000000	Autocorrelation	Spectrum 00000	Parseval	Example 00000000	Summary 000
Outline	2					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 Review: Power Spectrum
- 2 Autocorrelation
- 3 Autocorrelation of Filtered Noise
- 4 Power Spectrum of Filtered Noise
- 5 Parseval's Theorem
- 6 Example
- 7 Summary

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000	000000000000	00000	●00	00000000	000
Parseva	l's Theore	m				

Now we have everything we need to prove Parseval's theorem. Let's prove the DTFT power form of the theorem, for a finite-length signal:

$$\frac{1}{N}\sum_{n=0}^{N-1} x^{2}[n] = \frac{1}{2\pi}\int_{-\pi}^{\pi} R_{xx}(\omega)d\omega$$

where

$$R_{xx}(\omega) = rac{1}{N} |X(\omega)|^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000		000000000000	00000	0●0	00000000	000
Parseva	al's Theore	m				

$$\frac{1}{N}\sum_{n=0}^{N-1}x^{2}[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}R_{xx}(\omega)d\omega$$

Notice that the left-hand side is the autocorrelation, with a lag of 0:

$$r_{xx}[m] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n-m]$$

So Parseval's theorem is just saying that

$$r_{xx}[0] = rac{1}{2\pi} \int_{-\pi}^{\pi} R_{xx}(\omega) d\omega$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000		000000000000	00000	00●	00000000	000
Wiener	's Theorem					

Wiener's theorem says that the power spectrum is the Fourier transform of the autocorrelation:

$$r_{xx}[n] = rac{1}{2\pi} \int_{-\pi}^{\pi} R_{xx}(\omega) e^{j\omega n} d\omega$$

But notice what happens if we plug in n = 0:

$$r_{xx}[0] = rac{1}{2\pi} \int_{-\pi}^{\pi} R_{xx}(\omega) d\omega$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Q.E.D.

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000		00000	000	00000000	000
Outline	2					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 Review: Power Spectrum
- 2 Autocorrelation
- 3 Autocorrelation of Filtered Noise
- 4 Power Spectrum of Filtered Noise
- 5 Parseval's Theorem

0000000		OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	00000	000	€0000000	000
Examp	le: Autocc	prrelation of	White I	Voise		

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000		000000000000	00000	000	00000000	000
Exampl	e: Filterin	g of White	Noise			

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000	000000000000	00000	000	00000●00	000
Exampl	e: Autocc	rrelation of	Colored	Noise		

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Review 0000000	Autocorrelation 00000000	Autocorrelation	Spectrum 00000	Parseval 000	Example 00000000	Summary
Outline	2					

- 1 Review: Power Spectrum
- 2 Autocorrelation
- 3 Autocorrelation of Filtered Noise
- 4 Power Spectrum of Filtered Noise
- 5 Parseval's Theorem
- 6 Example

• Wiener's theorem says that the power spectrum is the DTFT of autocorrelation:

$$r_{xx}[n] = rac{1}{2\pi} \int_{-\pi}^{\pi} R_{xx}(\omega) e^{j\omega n} d\omega$$

• Parseval's theorem says that average power in the time domain is the same as average power in the frequeny domain:

$$r_{xx}[0] = rac{1}{2\pi} \int_{-\pi}^{\pi} R_{xx}(\omega) d\omega$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Review	Autocorrelation	Autocorrelation	Spectrum	Parseval	Example	Summary
0000000	00000000		00000	000	00000000	0●0
Filtered	Noise					

If
$$y[n] = h[n] * x[n]$$
, $x[n]$ is any noise signal, then

$$r_{yy}[n] = r_{xx}[n] * h[n] * h[-n]$$
$$R_{yy}(\omega) = R_{xx}(\omega)|H(\omega)|^2$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

If x[n] is zero-mean unit variance white noise, and y[n] = h[n] * x[n], then

$$E[r_{xx}[n]] = \delta[n]$$

$$E[R_{xx}(\omega)] = 1$$

$$E[r_{yy}[n]] = h[n] * h[-n]$$

$$E[R_{yy}(\omega)] = |H(\omega)|^{2}$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで