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Noisy Telephones

In the 1920s, Harvey Fletcher had a problem.

Telephones were noisy (very noisy).

Sometimes, people could hear the speech. Sometimes not.

Fletcher needed to figure out why people could or couldn’t
hear the speech, and what Western Electric could do about it.
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Tone-in-Noise Masking Experiments

He began playing people pure tones mixed with noise, and asking
people “do you hear a tone”? If 50% of samples actually contained
a tone, and if the listener was right 75% of the time, he considered
the tone “audible.”
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Tone-in-Noise Masking Experiments

People’s ears are astoundingly good. This tone is inaudible in this
noise. But if the tone was only 2× greater amplitude, it would be
audible.
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Tone-in-Noise Masking Experiments

Even more astounding: the same tone, in a very slightly different
noise, is perfectly audible, to every listener.
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What’s going on (why can listeners hear the tone?)
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Review: Discrete Time Fourier Transform

Remember the discrete time Fourier transform (DTFT):

X (ω) =
∞∑

n=−∞
x [n]e−jωn, x [n] =

1

2π

∫ π

−π
|X (ω)|e jωndω

If the signal is only N samples in the time domain, we can
calculate samples of the DTFT using a discrete Fourier transform:

X [k] = X

(
ωk =

2πk

N

)
=
∞∑
n=0

x [n]e−j
2πkn
N

We sometimes write this as X [k] = X (ωk), where, obviously,
ωk = 2πk

N .
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What’s going on (why can listeners hear the tone?)
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Fourier to the Rescue

Here’s the DFT power spectrum (|X [k]|2) of the tone, the white
noise, and the combination.
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Bandstop Noise

The “bandstop” noise is called “bandstop” because I arbitrarily set
its power to zero in a small frequency band centered at 1kHz. Here
is the power spectrum. Notice that, when the tone is added to the
noise signal, the little bit of extra power makes a noticeable
(audible) change, because there is no other power at that
particular frequency.
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Fletcher’s Model of Masking

Fletcher proposed the following model of hearing in noise:

1 The human ear pre-processes the audio using a bank of
bandpass filters.

2 The power of the noise signal, in the kth bandpass filter, is Nk .

3 The power of the noise+tone is Nk + Tk .

4 If there is any band, k , in which Nk+Tk
Nk

> threshold, then the
tone is audible. Otherwise, not.
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Von Bekesy and the Basilar Membrane

In 1928, Georg von Békésy found Fletcher’s auditory filters.

Surprise: they are mechanical.

The inner ear contains a long (3cm), thin (1mm), tightly
stretched membrane (the basilar membrane). Like a steel
drum, it is tuned to different frequencies at different places:
the outer end is tuned to high frequencies, the inner end to
low frequencies.

About 30,000 nerve cells lead from the basilar membrane to
the brain stem. Each one sends a signal if its part of the
basilar membrane vibrates.
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Blausen.com staff (2014). “Medical gallery of Blausen Medical 2014.” WikiJournal of Medicine 1 (2).

DOI:10.15347/wjm/2014.010. ISSN 2002-4436.
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Dick Lyon, public domain image, 2007. https://en.wikipedia.org/wiki/File:Cochlea_Traveling_Wave.png

https://en.wikipedia.org/wiki/File:Cochlea_Traveling_Wave.png
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Frequency responses of the auditory filters

Here are the squared magnitude frequency responses (|H(ω)|2) of
26 of the 30000 auditory filters. I plotted these using the
parametric model published by Patterson in 1974:



Motivation Filters White Noise Colors Summary

Filtered white noise

An acoustic white noise signal (top), filtered through a spot on the
basilar membrane with a particular impulse response (middle),
might result in narrowband-noise vibration of the basilar membrane
(bottom).
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Filtered white noise

An acoustic white noise signal (top), filtered through a spot on the
basilar membrane with a particular impulse response (middle),
might result in narrowband-noise vibration of the basilar membrane
(bottom).
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Tone + Noise: Waveform

If there is a tone embedded in the noise, then even after filtering,
it’s very hard to see that the tone is there. . .
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Filtered white noise

But, Fourier comes to the rescue! In the power spectrum, it is
almost possible, now, to see that the tone is present in the white
noise masker.
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Filtered bandstop noise

If the masker is bandstop noise, instead of white noise, the
spectrum after filtering looks very different. . .
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Filtered tone + bandstop noise

. . . and the tone+noise looks very, very different from the noise by
itself.

This is why the tone is audible!
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What an excellent model! Why should I believe it?

Now that you’ve seen the pictures, it’s time to learn the math.

What is white noise?

What is a power spectrum?

What is filtered noise?

Let’s find out.
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What is Noise?

By “noise,” we mean a signal x [n] that is unpredictable. In other
words, each sample of x [n] is a random variable.
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What is White Noise?

“White noise” is a noise signal where each sample, x [n], is
uncorrelated with all the other samples. Using E [·] to mean
“expected value,” we can write:

E [x [n]x [n + m]] = E [x [n]]E [x [n + m]] for m 6= 0

Most noises are not white noise. The equation above is only
true for white noise. White noise is really useful, so we’ll work with
this equation a lot, but it’s important to remember: Only white
noise has uncorrelated samples.
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What is Zero-Mean, Unit-Variance White Noise?

Zero-mean, unit-variance white noise is noise with uncorrelated
samples, each of which has zero mean:

µ = E [x [n]] = 0

and unit variance:

σ2 = E
[
(x [n]− µ)2

]
= 1

Putting the above together with the definition of white noise, we
get

E [x [n]x [n + m]] =

{
1 m = 0

0 m 6= 0
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What is the Spectrum of White Noise?

Let’s try taking the Fourier transform of zero-mean, unit-variance
white noise:

X (ω) =
∞∑

n=−∞
x [n]e−jωn

The right-hand side of the equation is random, so the left-hand
side is random too. In other words, if x [n] is noise, then

for any particular frequency, ω, that you want to investigate,

X (ω) is a random variable.

It has a random real part (XR(ω))

It has a random imaginary part (XI (ω)).
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What is the Average Fourier Transform of White Noise?

Since X (ω) is a random variable, let’s find its expected value.

E [X (ω)] = E

[ ∞∑
n=−∞

x [n]e−jωn

]

Expectation is linear, so we can write

E [X (ω)] =
∞∑

n=−∞
E [x [n]] e−jωn

But E [x [n]] = 0! So

E [X (ω)] = 0

That’s kind of disappointing, really. Who knew noise could be so
boring?
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What is the Average Squared Magnitude Spectrum of
White Noise?

Fortunately, the squared magnitude spectrum, |X (ω)|2, is a little
more interesting:

E
[
|X (ω)|2

]
= E [X (ω)X ∗(ω)]

Goodness. What is that? Let’s start out by trying to figure out
what is X ∗(ω), the complex conjugate of X (ω).
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What is the Complex Conjugate of a Fourier Transform?

First, let’s try to figure out what X ∗(ω) is:

X ∗(ω) = (F {x [m]})∗

=

( ∞∑
m=−∞

x [m]e−jωm

)∗

=
∞∑

m=−∞
x [m]e jωm
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Average Squared Magnitude Spectrum?

Now let’s plug back in here:

E
[
|X (ω)|2

]
= E [X (ω)X ∗(ω)]

= E

[( ∞∑
n=−∞

x [n]e−jωn

)( ∞∑
m=−∞

x [m]e jωm

)]

= E

[ ∞∑
n=−∞

∞∑
m=−∞

x [n]x [m]e jω(m−n)

]

=
∞∑

n=−∞

∞∑
m=−∞

E [x [n]x [m]] e jω(m−n)

But remember the definition of zero-mean white noise:
E [x [n]x [m]] = 0 unless n = m. So

E
[
|X (ω)|2

]
=

∞∑
n=−∞

E
[
x2[n]

]
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Energy Spectrum is Infinity!! Oops.

We have proven that the expected squared-magnitude Fourier
transform of zero-mean, unit-variance white noise is a constant:

E
[
|X (ω)|2

]
=

∞∑
n=−∞

E
[
x2[n]

]
=

∞∑
n=−∞

1

Unfortunately, the constant is infinity!
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Power Spectrum

Wiener solved this problem by defining something called the
Power Spectrum:

Rxx(ω) = lim
N→∞

1

N

∣∣∣∣∣∣
(N−1)/2∑

n=−(N−1)/2

x [n]e−jωn

∣∣∣∣∣∣
2
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What is power?

Power (Watts=Joules/second) is energy (in Watts) per unit
time (in seconds).

Example: electrical energy = volts×charge,
power=volts×current (current = charge/time)

Example: mechanical energy = force×distance,
power=force×velocity (velocity = distance/time)
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Power Spectrum of White Noise

So the power spectrum of white noise is

Rxx(ω) = lim
N→∞

1

N
|X (ω)|2

where N is the number of samples over which we computed the
Fourier transform.
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Power Spectrum of White Noise

And now here’s why white noise is called “white:”

E [Rxx(ω)] =
1

N
E
[
|X (ω)|2

]
=

1

N

(N−1)/2∑
n=−(N−1)/2

E
[
x2[n]

]

=
1

N

(N−1)/2∑
n=−(N−1)/2

1

= 1

The power spectrum of white noise is, itself, a random variable;
but its expected value is the power of x [n],

E [Rxx(ω)] = E [x2[n]] = 1
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The Power Spectrum of Filtered Noise

Suppose that we filter the white noise, like this:

y [n] = h[n] ∗ x [n] ↔ Y (ω) = H(ω)X (ω)
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Power Spectrum of Filtered Noise

The power spectrum of the filtered noise will be

Ryy (ω) = lim
N→∞

1

N
|H(ω)X (ω)|2

= |H(ω)|2Rxx(ω)

= |H(ω)|2

where N is the number of samples over which we computed the
Fourier transform.
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Colors, anybody?

Noise with a flat power spectrum (uncorrelated samples) is
called white noise.

Noise that has been filtered (correlated samples) is called
colored noise.

If it’s a low-pass filter, we call it pink noise (this is quite
standard).
If it’s a high-pass filter, we could call it blue noise (not so
standard).
If it’s a band-pass filter, we could call it green noise (not at all
standard, but I like it!)
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What is the Power of Filtered Noise?

Remember that, for white noise, we had

E [Rxx(ω)] = E [x2[n]] = 1

The same thing turns out to be true for filtered noise:

E
[
y2[n]

]
= average (E [Ryy (ω)])

=
1

2π

∫ π

−π
E [Ryy (ω)] dω
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Power of White Noise: Example

For example, here is a white noise signal x [n], and its power
spectrum Rxx(ω) = 1

N |X (ω)|2:
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Power of Pink Noise: Example

Here’s the same signal, after filtering with a lowpass filter with
cutoff π/2:
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Power of Blue Noise: Example

Here’s the same signal, after filtering with a highpass filter with
cutoff π/2:
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Parseval’s Theorem

The relationship between energy in the time domain and energy in
the frequency domain is summarized by Parseval’s theorem. There
is a form of Parseval’s theorem for every type of Fourier transform.
For the DTFT, it is

∞∑
n=−∞

x2[n] =
1

2π

∫ π

−π
|X (ω)|2dω

For the DFT, it is:

N−1∑
n=0

x2[n] =
1

N

N−1∑
k=0

|X [k]|2
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Parseval’s Theorem

For the power spectrum, Parseval’s theorem says that power is the
same in both time domain and frequency domain:

lim
N→∞

1

N

(N−1)/2)∑
n=−(N−1)/2

x2[n] =
1

2π

∫ π

−π
Rxx(ω)ω

The DFT version of power is:

1

N

N−1∑
n=0

x2[n] =
1

N

N−1∑
k=0

|Rxx(ωk)|2
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Summary

Masking: a pure tone can be heard, in noise, if there is at
least one auditory filter through which Nk+Tk

Nk
> threshold.

Zero-mean, unit-variance white Noise: samples of x [n] are
uncorrelated, so the expected power spectrum is:

E [Rxx(ω)] = 1

Power spectrum in general: The relationship between power in
the time domain, and power in the frequency domain, in
general, is given by Parseval’s Theorem:

∞∑
n=−∞

x2[n] =
1

2π

∫ π

−π
|X (ω)|2dω

lim
N→∞

1

N

(N−1)/2)∑
n=−(N−1)/2

x2[n] =
1

2π

∫ π

−π
Rxx(ω)ω
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