Lecture 16: Linear Prediction

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2020

© Review: All-Pole Filters
© Inverse Filtering
© Linear Prediction

@ Finding the Linear Predictive Coefficients

e Summary

Review

Outline

@ Review: All-Pole Filters

Review
©000

All-

Pole Filter

An all-pole filter has the system function:

1 1

f{ — =
(2) (1—p1z7 V)1 —piz7t) 1—aiz7!—apz=?’

so it can be implemented as
y[n] = x[n] + a1y[n — 1] + ay[n — 2]
where

a1 = (p1 + p1) = 2e 7 cos(w1)

a=—|p[> =—e?"

Review
0e00

Frequency Response of an All-Pole Filter

We get the magnitude response by just plugging in z = ¢/, and
taking absolute value:

1
H =|H i = .
| = M@ e = T e]
Pole-Zero Plot, p1 = exp(—0.1+ j2n/5) s |H(w)|, max=1/0.1 =10, bandwidth=0.2
2.0 1 imag(z)
15 5

1.0
ad

=)
oo /\
Y Real(7)]
_05 1

P 24
1.0

-1.54 1

—2.04

w4 w2 34 n
Frequency {(w)

(=)e(+)

2 —

Review
coeo

Impulse Response of an All-Pole Filter

We get the impulse response using partial fraction expansion:

hin] = (Gipt + G (p1)") uln]

1 g
= — e sin(wi(n+ 1)) uln
e sin (= 1)) ol
x[m]=386[m]
.
DERR
g ‘
ALO — m]
ol % ;ﬂ"
Rk
yIm]=him]*x[m]
10 A
N
=101 T . . r . r
-10 0 10 20 30 40 50

(K][<<TD>>1] [=[orel[+)

Review
oooe

Speech is made up of Damped Sinusoids

Resonant systems, like speech, trumpets, and bells, are made up
from the series combination of second-order all-pole filters.

Waveform of the vowel /o/

1.0

0.8+

0.6 q

0.4 1

0.2 4

0.0 4

T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025
Time (sec)

Second-Order

Outline

© Inverse Filtering

Second-Order
©000000

Speech

Speech is made when we take a series of impulses, one every
5-10ms, and filter them through a resonant cavity (like a bell).

Air pressure at glottis = series of negative impulses
0_

—5

Impulse response of the vocal tract = damped resonances

Air pressure at lips = series of damped resonances

T T T T T T T
0 50 100 150 200 250 300 350 400
Time (samples)

Second-Order
0®00000

Speech

Speech is made when we take a series of impulses, one every
5-10ms, and filter them through a resonant cavity (like a bell).

1
S(z) = H(z)E(z) = @E(z)
where the excitation signal is a set of impulses, maybe only one per
frame:

e[n] = Go[n — no]

The only thing we don’t know, really, is the amplitude of the
impulse (G), and the time at which it occurs (ng). Can we find
out?

Second-Order
00®0000

Speech: The Model

Air pressure at glottis = G&[n — ngl, once per frame

Impulse response of the vocal tract

Air pressure at lips = Gh[n — ng], once per frame

5
04
-5

0 10 20 30 40 50 60 70 80
Time (samples)

Second-Order
000e®000

Speech: The Real Thing

Waveform of the vowel /o/

1.0 4

0.8+

0.6 q

0.4 1

0.2 4

0.0

—0.2 4

T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025
Time (sec)

Second-Order
0000®00

Inverse Filtering

If S(z) = E(z)/A(z), then we can get E(z) back again by doing
something called an inverse filter:

IF: S(z) %E(z) THEN: £(2) = A(2)S(2)

The inverse filter, A(z), has a form like this:

P
Alz)=1- Z axz K
k=1

where p is twice the number of resonant frequencies. So if speech
has 4-5 resonances, then p = 10.

Second-Order
000000

Inverse Filtering

Waveform, s[n], of the vowel /o/

14
0] \N/\/\N\AJRMAJV\/\,_
0.000 0.005 0.010 0.015 0.020 0.025
Predictor Coefficients ax
sl
0 . - . . e * v °
2 a : B 10
Result of Inverse Filtering, e[n] = s[n] — sumyags[n — k]
0.1
0.0 1 WWAWWWWAWWJWMWW
0.600 O.OIOS 0.610 0.615 0.0‘20 0.625

Time (sec)

Second-Order
©000000e

Inverse Filtering

This one is an all-pole (feedback-only) filter:

1

S(Z) = 1 _ [;:1 akz_

rE(2)

That means this one is an all-zero (feedfoward only) filter:

E(z) = (1 - Zakzk> 5(z)
k=1

which we can implement just like this:

e[n] = s[n] — Z aks[n — k|
k=1

Linear Prediction

Outline

© Linear Prediction

Linear Prediction
©0000

Linear Predictive Analysis

This particular feedforward filter is called linear predictive
analysis:

e[n] = s[n] — Z aks[n — K|
k=1

It's kind of like we're trying to predict s[n] using a linear
combination of its own past samples:

s[n] = Z ags[n — k],
k=1

and then e[n], the glottal excitation, is the part that can't be
predicted:
e[n] = s[n] — §[n]

Linear Prediction
0®000

Linear Predictive Analysis

Actually, linear predictive analysis is used a lot more often in
finance, these days, than in speech:

@ In finance: detect important market movements = price
changes that are not predictable from recent history.

@ In health: detect EKG patterns that are not predictable from
recent history.

@ In geology: detect earthquakes = impulses that are not
predictable from recent history.

@ ...you get the idea. ..

Linear Prediction
00®00

Linear Predictive Analysis Filter

s[] - o elr]

Linear Prediction
000®0

Linear Predictive Synthesis

The corresponding feedback filter is called linear predictive
synthesis. The idea is that, given e[n], we can resynthesize s[n] by
adding feedback, because:

S(z)

! (2)

= E(z
1-3 o akz
means that

sln] = e[n] + > _ aks[n —]
k=1

Linear Prediction
ooooe

Linear Predictive Synthesis Filter

eln] - o s[n]

Predictors

Outline

Finding the Linear Predictive Coefficients
g

Predictors
©0000000000

Finding the Linear Predictive Coefficients

Things we don't know:
@ The timing of the unpredictable event (ng), and its amplitude
(G).
@ The coefficients a.

It seems that, in order to find ng and G, we first need to know the
predictor coefficients, ax. How can we find a7

Predictors
0®000000000

Finding the Linear Predictive Coefficients

Let's make the following assumption:

@ Everything that can be predicted is part of $[n]. Only the
unpredictable part is e[n].

Predictors
00®00000000

Finding the Linear Predictive Coefficients

Let's make the following assumption:

@ Everything that can be predicted is part of §[n]. Only the
unpredictable part is e[n].

@ So we define e[n] to be:

P
e[n] = s[n] — Z ags[n — k|
k=1
@ ...and then choose ax to make e[n] as small as possible.

o0
ay = argmin Z e?[n]

n=—0o0

Predictors
00080000000

Finding the Linear Predictive Coefficients

So we've formulated the problem like this: we want to find ax in
order to minimize:

o0 e}

p 2
E= Z e?[n] = Z (s[n] - Z ams[n — m])
m=1

n=—oo n=—oo

Predictors
0000®000000

Finding the Linear Predictive Coefficients

We want to find the coefficients a, that minimize £. We can do
that by differentiating, and setting the derivative equal to zero:

dé = -

dar 2,,_2_300 (s[n] - mz_:lams[n - m]) s[n—k], foralll<k<p

0= i (s[n]zp:ams[nm]> s[n—k], foralll1<k<p
n=—o00 m=1

This is a set of p different equations (for 1 < k < p) in p different
unknowns (ax). So it can be solved.

Predictors
00000@00000

Autocorrelation

In order to write the solution more easily, let's define something
called the “autocorrelation,” R[m]:

o0

R[m] = Z s[n]s[n — m]

n=—0o0

In terms of the autocorrelation, the derivative of the error is
P
0=R[K—> amRlk—m] V1<k<p
m=1
or we could write

R[k]:zp:amR[k—m] Vi<k<p

m=1

Predictors
000000@0000

Matrices

Since we have p linear equations in p unknowns, let's write this as
a matrix equation:

RI1) RO) RN - Rp—17T a
RRI | | RO ROl - Rlp-2] | | 2
Rl] L Rp-1 RIp-2 - ROl | |

where I've taken advantage of the fact that R[m] = R[—m]:

o0

Rlml= Y s[n]s[n— m]

n=—oo

Predictors
0000000000

Matrices

Since we have p linear equations in p unknowns, let's write this as
a matrix equation:

¥ =Ra
where
R ROl R - Rlp—1]
5= R[2] _ R[1] R[O] - Rlp—2]

RIp] Rlo-1 Rlp—2 - R[]

Predictors
00000000800

Matrices

Since we have p linear equations in p unknowns, let’s write this as
a matrix equation:
¥ =Ra

and therefore the solution is

i=R 'y

Predictors
00000000080

Finding the Linear Predictive Coefficients

So here’s the way we perform linear predictive analysis:
© Create the matrix R and vector 7:

RIL] ROl R - Rlp—1]
. R[2] R[1] RO} - Rlp-2]
= : , R= : : :

Rip] Rlp—=1 Rlp—2] --- R[0]

Q Invert R.

=R ¥

Predictors
0000000000e

Inverse Filtering

Waveform, s[n], of the vowel /o/

14
0] \N/\/\N\AJRMAJV\/\,_
0.000 0.005 0.010 0.015 0.020 0.025
Predictor Coefficients ax
sl
0 . - . . e * v °
2 a : B 10
Result of Inverse Filtering, e[n] = s[n] — sumyags[n — k]
0.1
0.0 1 WWAWWWWAWWJWMWW
0.600 O.OIOS 0.610 0.615 0.0‘20 0.625

Time (sec)

Summary

Outline

© Summary

Summary
®00

Inverse Filtering

If S(z) = E(z)/A(z), then we can get E(z) back again by doing
something called an inverse filter:

IF: S(z) = A(IZ)E(Z) THEN: £(z) = A(2)S(2)

which we implement using a feedfoward difference equation, that
computes a linear prediction of s[n], then finds the difference
between s[n] and its linear prediction:

e[n] = s[n] — Z aks[n — K|
k=1

Summary
oeo

Linear Predictive Analysis

Actually, linear predictive analysis is used a lot more often in
finance, these days, than in speech:

@ In finance: detect important market movements = price
changes that are not predictable from recent history.

@ In health: detect EKG patterns that are not predictable from
recent history.

@ In geology: detect earthquakes = impulses that are not
predictable from recent history.

@ ...you get the idea. ..

Summary
ooe

Finding the Linear Predictive Coefficients

Let's make the following assumption:

e Everything that can be predicted is part of §[n]. Only the
unpredictable part is e[n].

@ So we define e[n] to be:

P
e[n] = s[n] — Z ags[n — k]
k=1
@ ...and then choose ay to make e[n] as small as possible.

oo
ay = argmin Z e?[n]

n=—0oo

which, when solved, gives us the simple equation 3= R™17.

	Review: All-Pole Filters
	Inverse Filtering
	Linear Prediction
	Finding the Linear Predictive Coefficients
	Summary

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:

