
Review Block Diagrams Inverse Z Summary

Lecture 13: Block Diagrams and the Inverse Z
Transform

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2020



Review Block Diagrams Inverse Z Summary

1 Review: FIR and IIR Filters, and System Functions

2 The System Function and Block Diagrams

3 Inverse Z Transform

4 Summary



Review Block Diagrams Inverse Z Summary

Outline

1 Review: FIR and IIR Filters, and System Functions

2 The System Function and Block Diagrams

3 Inverse Z Transform

4 Summary



Review Block Diagrams Inverse Z Summary

Review: FIR and IIR Filters

An autoregressive filter is also called infinite impulse
response (IIR), because h[n] has infinite length.

A filter with only feedforward coefficients, and no feedback
coefficients, is called finite impulse response (FIR), because
h[n] has finite length (its length is just the number of
feedforward terms in the difference equation).
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Summary: Poles and Zeros

A first-order autoregressive filter,

y [n] = x [n] + bx [n − 1] + ay [n − 1],

has the impulse response and transfer function

h[n] = anu[n] + ban−1u[n − 1]↔ H(z) =
1 + bz−1

1− az−1
,

where a is called the pole of the filter, and −b is called its zero.
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Why use block diagrams?

A first-order difference equation looks like

y [n] = b0x [n] + b1x [n − 1] + ay [n − 1]

It’s pretty easy to understand what computation is taking
place in a first-order difference equation.

As we get to higher-order systems, though, the equations for
implementing them will be kind of complicated.

In order to make the complicated equations very easy, we
represent the equations using block diagrams.
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Elements of a block diagram

A block diagram has just three main element types:

1 Multiplier: the following element means y [n] = b0x [n]:

y [n]

b0
x [n]

2 Unit Delay: the following element means y [n] = x [n − 1]
(i.e., Y (z) = z−1X (z)):

y [n]z−1x [n]

3 Adder: the following element means z [n] = x [n] + y [n]:

z [n]y [n]

x [n]



Review Block Diagrams Inverse Z Summary

Example: Time Domain

Here’s an example of a complete block diagram:
y [n]

z−1

a

x [n]

This block diagram is equivalent to the following equation:

y [n] = x [n] + ay [n − 1]

Notice that we can read it, also, as

Y (z) = X (z) + az−1Y (z) ⇒ H(z) =
1

1− az−1
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A Complete First-Order IIR Filter

Now consider how we can represent a complete first-order IIR filter,
including both the pole and the zero. Here’s its system function:

Y (z) = b0X (z) + b1z
−1X (z) + a1z

−1Y (z).

When we implement it, we would write a line of python that does
this:

y [n] = b0x [n] + b1x [n − 1] + a1y [n − 1],

which is exactly this block diagram:

y [n]

z−1z−1
b0

a1b1

x [n]
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Series and Parallel Combinations

Now let’s talk about how to combine systems.

Series combination: passing the signal through two systems
in series is like multiplying the system functions:

H(z) = H2(z)H1(z)

Parallel combination: passing the signal through two
systems in parallel, then adding the outputs, is like adding
the system functions:

H(z) = H1(z) + H2(z)
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One Block for Each System

Suppose that one of the two systems, H1(z), looks like this:

y [n]

z−1

p1

x [n]

and has the system function

H1(z) =
1

1− p1z−1

Let’s represent the whole system using a single box:

y [n]H1(z)x [n]
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Series Combination

The series combination, then, looks like this:

y2[n]H2(z)
y1[n]

H1(z)x [n]

This means that

Y2(z) = H2(z)Y1(z) = H2(z)H1(z)X (z)

and therefore

H(z) =
Y (z)

X (z)
= H1(z)H2(z)
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Series Combination

The series combination, then, looks like this:

y2[n]H2(z)H1(z)x [n]

Suppose that we know each of the systems separately:

H1(z) =
1

1− p1z−1
, H2(z) =

1

1− p2z−1

Then, to get H(z), we just have to multiply:

H(z) =
1

(1− p1z−1)(1− p2z−1)
=

1

1− (p1 + p2)z−1 + p1p2z−2
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Parallel Combination

Parallel combination of two systems looks like this:

y [n]

H1(z)

H2(z)

x [n]

This means that

Y (z) = H1(z)X (z) + H2(z)X (z)

and therefore

H(z) =
Y (z)

X (z)
= H1(z) + H2(z)
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Parallel Combination

Parallel combination of two systems looks like this:

y [n]

H1(z)

H2(z)

x [n]

Suppose that we know each of the systems separately:

H1(z) =
1

1− p1z−1
, H2(z) =

1

1− p2z−1

Then, to get H(z), we just have to add:

H(z) =
1

1− p1z−1
+

1

1− p2z−1
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Parallel Combination

Parallel combination of two systems looks like this:

y [n]

H1(z)

H2(z)

x [n]

H(z) =
1

1− p1z−1
+

1

1− p2z−1

=
1− p2z

−1

(1− p1z−1)(1− p2z−1)
+

1− p1z
−1

(1− p1z−1)(1− p2z−1)

=
2− (p1 + p2)z−1

1− (p1 + p2)z−1 + p1p2z−2
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Inverse Z transform

Suppose you know H(z), and you want to find h[n]. How can you
do that?
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How to find the inverse Z transform

Any IIR filter H(z) can be written as. . .

a sum of exponential terms, each with this form:

G`(z) =
1

1− az−1
↔ g`[n] = anu[n],

each possibly multiplied by a delay term, like this one:

Dk(z) = bkz
−k ↔ dk [n] = bkδ[n − k].
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Step #1: The Products

Consider one that you already know:

H(z) =
1 + bz−1

1− az−1
=

(
1

1− az−1

)
+ bz−1

(
1

1− az−1

)
and therefore

h[n] = (anu[n]) + b
(
an−1u[n − 1]

)



Review Block Diagrams Inverse Z Summary

Step #1: The Products

So here is the inverse transform of H(z) = 1+0.5z−1

1−0.85z−1 :
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Step #1: The Products

In general, if

G (z) =
1

A(z)

for any polynomial A(z), and

H(z) =

∑M
k=0 bkz

−k

A(z)

then
h[n] = b0g [n] + b1g [n − 1] + · · ·+ bMg [n −M]
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Step #2: The Sum

Now we need to figure out the inverse transform of

G (z) =
1

A(z)
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Step #2: The Sum

The method is this:

1 Factor A(z):

G (z) =
1∏N

`=1 (1− p`z−1)

2 Assume that G (z) is the result of a parallel system
combination:

G (z) =
C1

1− p1z−1
+

C2

1− p2z−1
+ · · ·

3 Find the constants, C`, that make the equation true.



Review Block Diagrams Inverse Z Summary

Example

Step # 1: Factor it:

1

1− 1.2z−1 + 0.72z−2
=

1

(1− (0.6 + j0.6)z−1) (1− (0.6− j0.6)z−1)

Step #2: Express it as a sum:

1

1− 1.2z−1 + 0.72z−2
=

C1

1− (0.6 + j0.6)z−1
+

C2

1− (0.6− j0.6)z−1

Step #3: Find the constants. The algebra is annoying, but it turns
out that:

C1 =
1

2
− j

1

2
, C2 =

1

2
+ j

1

2
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Example: All Done!

The system function is:

G (z) =
1

1− 1.2z−1 + 0.72z−2

=
0.5− 0.5j

1− (0.6 + j0.6)z−1
+

0.5 + 0.5j

1− (0.6− j0.6)z−1

and therefore the impulse response is:

g [n] = (0.5− 0.5j)(0.6 + 0.6j)nu[n] + (0.5 + 0.5j)(0.6− j0.6)nu[n]

=
(

0.5
√

2e−j π
4

(
0.6
√

2e j
π
4

)n
+ 0.5

√
2e j

π
4

(
0.6
√

2e−j π
4

)n)
u[n]

=
√

2(0.6
√

2)n cos
(π

4
(n − 1)

)
u[n]
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How to find the inverse Z transform

Any IIR filter H(z) can be written as. . .

a sum of exponential terms, each with this form:

G`(z) =
1

1− az−1
↔ g`[n] = anu[n],

each possibly multiplied by a delay term, like this one:

Dk(z) = bkz
−k ↔ dk [n] = bkδ[n − k].
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Summary: Block Diagrams

A block diagram shows the delays, additions, and
multiplications necessary to compute output from input.

Series combination: passing the signal through two systems
in series is like multiplying the system functions:

H(z) = H2(z)H1(z)

Parallel combination: passing the signal through two
systems in parallel, then adding the outputs, is like adding
the system functions:

H(z) = H1(z) + H2(z)
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Summary: Inverse Z Transform

Any IIR filter H(z) can be written as. . .

a sum of exponential terms, each with this form:

G`(z) =
1

1− az−1
↔ g`[n] = anu[n],

each possibly multiplied by a delay term, like this one:

Dk(z) = bkz
−k ↔ dk [n] = bkδ[n − k].
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Next Time

Next time:

How to design second-order notch filters, to get rid of 60Hz
line noise, and. . .

more about the frequency response and impulse response of
second-order filters.
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