▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lecture 13: Block Diagrams and the Inverse Z Transform

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 Review: FIR and IIR Filters, and System Functions

2 The System Function and Block Diagrams

3 Inverse Z Transform

Outline

1 Review: FIR and IIR Filters, and System Functions

2 The System Function and Block Diagrams

Inverse Z Transform

Inverse Z 00000000000

Review: FIR and IIR Filters

- An autoregressive filter is also called **infinite impulse response (IIR)**, because h[n] has infinite length.
- A filter with only feedforward coefficients, and no feedback coefficients, is called **finite impulse response (FIR)**, because h[n] has finite length (its length is just the number of feedforward terms in the difference equation).

Review	Block Diagrams	Inverse Z	Summary
o●	0000000000	0000000000	000
Summary:	Poles and Zeros		

A first-order autoregressive filter,

$$y[n] = x[n] + bx[n-1] + ay[n-1],$$

has the impulse response and transfer function

$$h[n] = a^n u[n] + ba^{n-1} u[n-1] \leftrightarrow H(z) = \frac{1+bz^{-1}}{1-az^{-1}},$$

where *a* is called the **pole** of the filter, and -b is called its **zero**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Review: FIR and IIR Filters, and System Functions

2 The System Function and Block Diagrams

Inverse Z Transform

Review	Block Diagrams	Inverse Z	Summary
00		0000000000	000
Why use block	diagrams?		

A first-order difference equation looks like

$$y[n] = b_0 x[n] + b_1 x[n-1] + a y[n-1]$$

- It's pretty easy to understand what computation is taking place in a first-order difference equation.
- As we get to higher-order systems, though, the equations for implementing them will be kind of complicated.

• In order to make the complicated equations very easy, we represent the equations using block diagrams.

Elamonto	f a black diagram		
00	000000000	0000000000	000
Review	Block Diagrams	Inverse Z	Summary

Elements of a block diagram

A block diagram has just three main element types:

• Multiplier: the following element means $y[n] = b_0 x[n]$:

$$x[n] \longrightarrow 0$$
 $y[n]$

Unit Delay: the following element means y[n] = x[n-1] (i.e., Y(z) = z⁻¹X(z)):

$$x[n] \longrightarrow z^{-1} \longrightarrow y[n]$$

3 Adder: the following element means z[n] = x[n] + y[n]:

This block diagram is equivalent to the following equation:

$$y[n] = x[n] + ay[n-1]$$

Notice that we can read it, also, as

$$Y(z) = X(z) + az^{-1}Y(z) \quad \Rightarrow \quad H(z) = \frac{1}{1 - az^{-1}}$$

-1

Review	Block Diagrams	Inverse Z	Summary
00	0000000000	0000000000	000
A Complete	First-Order IIR I	Filter	

Now consider how we can represent a complete first-order IIR filter, including both the pole and the zero. Here's its system function:

$$Y(z) = b_0 X(z) + b_1 z^{-1} X(z) + a_1 z^{-1} Y(z).$$

When we implement it, we would write a line of python that does this:

$$y[n] = b_0 x[n] + b_1 x[n-1] + a_1 y[n-1],$$

which is exactly this block diagram:

00	000000000	0000000000	000
Sories and Dara	llal Combinations		

Now let's talk about how to combine systems.

• Series combination: passing the signal through two systems in series is like multiplying the system functions:

$$H(z) = H_2(z)H_1(z)$$

• **Parallel combination**: passing the signal through two systems in **parallel**, then adding the outputs, is like adding the system functions:

$$H(z) = H_1(z) + H_2(z)$$

Review	Block Diagrams	Inverse Z	Summary
	0000000000		

One Block for Each System

Suppose that one of the two systems, $H_1(z)$, looks like this:

and has the system function

$$H_1(z) = \frac{1}{1 - p_1 z^{-1}}$$

Let's represent the whole system using a single box:

$$x[n] \sim H_1(z) \sim y[n]$$

Series Co	mbination		
00	00000000000	0000000000	000
Review	Block Diagrams	Inverse Z	Summary

The series combination, then, looks like this:

$$x[n] \longrightarrow H_1(z) \xrightarrow{y_1[n]} H_2(z) \longrightarrow y_2[n]$$

This means that

$$Y_2(z) = H_2(z)Y_1(z) = H_2(z)H_1(z)X(z)$$

and therefore

$$H(z) = \frac{Y(z)}{X(z)} = H_1(z)H_2(z)$$

Review	Block Diagrams	Inverse Z	Summary
00	000000000000	0000000000	000
Series Combi	nation		

The series combination, then, looks like this:

$$x[n] \longrightarrow H_1(z) \longrightarrow H_2(z) \longrightarrow y_2[n]$$

Suppose that we know each of the systems separately:

$$H_1(z) = rac{1}{1 - p_1 z^{-1}}, \qquad H_2(z) = rac{1}{1 - p_2 z^{-1}}$$

Then, to get H(z), we just have to multiply:

$$H(z) = \frac{1}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})} = \frac{1}{1 - (p_1 + p_2)z^{-1} + p_1 p_2 z^{-2}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Review	Block Diagrams	Inverse Z	Summary
	00000000000		
Parallel (ombination		

Parallel combination of two systems looks like this:

This means that

$$Y(z) = H_1(z)X(z) + H_2(z)X(z)$$

and therefore

$$H(z) = \frac{Y(z)}{X(z)} = H_1(z) + H_2(z)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

Review	Block Diagrams	Inverse Z	Summary
	0000000000		
Darallal (ombination		

Parallel combination of two systems looks like this:

Suppose that we know each of the systems separately:

$$H_1(z) = rac{1}{1 - p_1 z^{-1}}, \qquad H_2(z) = rac{1}{1 - p_2 z^{-1}}$$

Then, to get H(z), we just have to add:

$$H(z) = \frac{1}{1 - p_1 z^{-1}} + \frac{1}{1 - p_2 z^{-1}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Review	Block Diagrams	Inverse Z	Summary
	000000000		
Darallal C	ombination		

Parallel combination of two systems looks like this:

$$H(z) = \frac{1}{1 - p_1 z^{-1}} + \frac{1}{1 - p_2 z^{-1}}$$

= $\frac{1 - p_2 z^{-1}}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})} + \frac{1 - p_1 z^{-1}}{(1 - p_1 z^{-1})(1 - p_2 z^{-1})}$
= $\frac{2 - (p_1 + p_2)z^{-1}}{1 - (p_1 + p_2)z^{-1} + p_1 p_2 z^{-2}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Outline

1 Review: FIR and IIR Filters, and System Functions

2 The System Function and Block Diagrams

3 Inverse Z Transform

00	000000000	•000000000	000
Inverse 7	trancform		

Suppose you know H(z), and you want to find h[n]. How can you do that?

Any IIR filter H(z) can be written as...

• a sum of exponential terms, each with this form:

$$\mathcal{G}_\ell(z) = rac{1}{1-az^{-1}} \quad \leftrightarrow \quad g_\ell[n] = a^n u[n],$$

• each possibly **multiplied** by a **delay** term, like this one:

$$D_k(z) = b_k z^{-k} \quad \leftrightarrow \quad d_k[n] = b_k \delta[n-k].$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Review	Block Diagrams	Inverse Z	Summary
00	00000000000	oo●oooooooo	000
Step #1:	The Products		

Consider one that you already know:

$$H(z) = \frac{1 + bz^{-1}}{1 - az^{-1}} = \left(\frac{1}{1 - az^{-1}}\right) + bz^{-1}\left(\frac{1}{1 - az^{-1}}\right)$$

and therefore

$$h[n] = (a^n u[n]) + b \left(a^{n-1} u[n-1]\right)$$

Review	Block Diagrams	Inverse Z	Summary
00	00000000000	000●000000	000
Step #1:	The Products		

So here is the inverse transform of
$$H(z) = \frac{1+0.5z^{-1}}{1-0.85z^{-1}}$$
:

Review	Block Diagrams	Inverse Z	Summary
00	00000000000	0000●000000	000
Step #1:	The Products		

In general, if

$$G(z)=\frac{1}{A(z)}$$

for any polynomial A(z), and

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{A(z)}$$

then

$$h[n] = b_0 g[n] + b_1 g[n-1] + \cdots + b_M g[n-M]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Review	Block Diagrams	Inverse Z	Summary
00	0000000000	0000000000	000
Step #2:	The Sum		

Now we need to figure out the inverse transform of

$$G(z)=\frac{1}{A(z)}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Review	Block Diagrams	Inverse Z	Summary
00	0000000000	000000€0000	000
Step #2:	The Sum		

The method is this:

- Factor A(z): $G(z) = \frac{1}{\prod_{\ell=1}^{N} (1 - p_{\ell} z^{-1})}$
- Assume that G(z) is the result of a parallel system combination:

$$G(z) = \frac{C_1}{1 - p_1 z^{-1}} + \frac{C_2}{1 - p_2 z^{-1}} + \cdots$$

③ Find the constants, C_{ℓ} , that make the equation true.

Review	Block Diagrams	Inverse Z	Summary
00	0000000000		000
Example			

Step # 1: Factor it:

$$\frac{1}{1 - 1.2z^{-1} + 0.72z^{-2}} = \frac{1}{(1 - (0.6 + j0.6)z^{-1})(1 - (0.6 - j0.6)z^{-1})}$$

Step #2: Express it as a sum:

$$\frac{1}{1 - 1.2z^{-1} + 0.72z^{-2}} = \frac{C_1}{1 - (0.6 + j0.6)z^{-1}} + \frac{C_2}{1 - (0.6 - j0.6)z^{-1}}$$

Step #3: Find the constants. The algebra is annoying, but it turns out that:

$$C_1 = \frac{1}{2} - j\frac{1}{2}, \quad C_2 = \frac{1}{2} + j\frac{1}{2}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < ○

Review	Block Diagrams	Inverse Z	Summary
Evample			

The system function is:

$$G(z) = \frac{1}{1 - 1.2z^{-1} + 0.72z^{-2}}$$

= $\frac{0.5 - 0.5j}{1 - (0.6 + j0.6)z^{-1}} + \frac{0.5 + 0.5j}{1 - (0.6 - j0.6)z^{-1}}$

and therefore the impulse response is:

$$g[n] = (0.5 - 0.5j)(0.6 + 0.6j)^n u[n] + (0.5 + 0.5j)(0.6 - j0.6)^n u[n]$$

= $\left(0.5\sqrt{2}e^{-j\frac{\pi}{4}}\left(0.6\sqrt{2}e^{j\frac{\pi}{4}}\right)^n + 0.5\sqrt{2}e^{j\frac{\pi}{4}}\left(0.6\sqrt{2}e^{-j\frac{\pi}{4}}\right)^n\right)u[n]$
= $\sqrt{2}(0.6\sqrt{2})^n \cos\left(\frac{\pi}{4}(n-1)\right)u[n]$

▲□> <圖> < E> < E> E のQQ

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - のへ⊙

Any IIR filter H(z) can be written as...

• a sum of exponential terms, each with this form:

$$\mathcal{G}_\ell(z) = rac{1}{1-az^{-1}} \quad \leftrightarrow \quad g_\ell[n] = a^n u[n],$$

• each possibly multiplied by a delay term, like this one:

$$D_k(z) = b_k z^{-k} \quad \leftrightarrow \quad d_k[n] = b_k \delta[n-k].$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Outline

1 Review: FIR and IIR Filters, and System Functions

2 The System Function and Block Diagrams

Inverse Z Transform

Summary:	Block Diagrams		
Review	Block Diagrams	Inverse Z	Summary
00	0000000000	0000000000	●00

- A **block diagram** shows the delays, additions, and multiplications necessary to compute output from input.
- Series combination: passing the signal through two systems in series is like multiplying the system functions:

$$H(z) = H_2(z)H_1(z)$$

• **Parallel combination**: passing the signal through two systems in **parallel**, then adding the outputs, is like adding the system functions:

$$H(z) = H_1(z) + H_2(z)$$

Review	Block Diagrams	Inverse Z	Summary
00	0000000000	0000000000	⊙●⊙
Summary:	Inverse Z Transform		

Any IIR filter H(z) can be written as...

• a sum of exponential terms, each with this form:

$$\mathcal{G}_\ell(z) = rac{1}{1-az^{-1}} \quad \leftrightarrow \quad g_\ell[n] = a^n u[n],$$

• each possibly **multiplied** by a **delay** term, like this one:

$$D_k(z) = b_k z^{-k} \quad \leftrightarrow \quad d_k[n] = b_k \delta[n-k].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Next Time

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Next time:

- How to design second-order notch filters, to get rid of 60Hz line noise, and...
- more about the frequency response and impulse response of second-order filters.