Lecture 12: Autoregressive Filters

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2020
(1) Review: Z Transform
(2) Autoregressive Difference Equations
(3) Finite vs. Infinite Impulse Response
(4) Impulse Response and Transfer Function of a First-Order Autoregressive Filter
(5) Finding the Poles and Zeros of $\mathrm{H}(\mathrm{z})$
(6) Summary

Outline

(1) Review: Z Transform
(2) Autoregressive Difference Equations
(3) Finite vs. Infinite Impulse Response
(4) Impulse Response and Transfer Function of a First-Order Autoregressive Filter
(5) Finding the Poles and Zeros of $\mathrm{H}(\mathrm{z})$
(6) Summary

Summary: Z Transform

- A difference equation is an equation in terms of time-shifted copies of $x[n]$ and/or $y[n]$.
- We can find the frequency response $H(\omega)=Y(\omega) / X(\omega)$ by taking the DTFT of each term of the difference equation. This will result in a lot of terms of the form $e^{j \omega n_{0}}$ for various n_{0}.
- We have less to write if we use a new frequency variable, $z=e^{j \omega}$. This leads us to the Z transform:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Zeros of the Transfer Function

- The transfer function, $H(z)$, is a polynomial in z.
- The zeros of the transfer function are usually complex numbers, z_{k}.
- The frequency response, $H(\omega)=\left.H(z)\right|_{z=e^{j \omega}}$, has a dip whenever ω equals the phase of any of the zeros, $\omega=\angle z_{k}$.

Outline

(1) Review: Z Transform
(2) Autoregressive Difference Equations
(3) Finite vs. Infinite Impulse Response
(4) Impulse Response and Transfer Function of a First-Order Autoregressive Filter
(5) Finding the Poles and Zeros of $\mathrm{H}(\mathrm{z})$
(6) Summary

Autoregressive Difference Equations

An autoregressive filter is one in which the output, $y[n]$, depends on past values of itself (auto=self, regress=go back). For example,

$$
y[n]=x[n]+0.3 x[n-1]+0.8 y[n-1]
$$

Autoregressive Difference Equations

We can find the transfer function by taking the Z transform of each term in the equation:

$$
\begin{aligned}
y[n] & =x[n]+0.3 x[n-1]+0.8 y[n-1] \\
Y(z) & =X(z)+0.3 z^{-1} X(z)+0.8 z^{-1} Y(z)
\end{aligned}
$$

Transfer Function

In order to find the transfer function, we need to solve for $H(z)=\frac{Y(z)}{X(z)}$.

$$
\begin{aligned}
Y(z) & =X(z)+0.3 z^{-1} X(z)+0.8 z^{-1} Y(z) \\
\left(1-0.8 z^{-1}\right) Y(z) & =X(z)\left(1+0.3 z^{-1}\right) \\
H(z)=\frac{Y(z)}{X(z)} & =\frac{1+0.3 z^{-1}}{1-0.8 z^{-1}}
\end{aligned}
$$

Frequency Response

As before, we can get the frequency response by just plugging in $z=e^{j \omega}$. Some autoregressive filters are unstable, ${ }^{1}$ but if the filter is stable, then this works:

$$
H(\omega)=\left.H(z)\right|_{z=e^{j \omega}}=\frac{1+0.3 e^{-j \omega}}{1-0.8 e^{-j \omega}}
$$

1 "Unstable" means that the output can be infinite, even with a finite input. More about this later in the lecture.

Frequency Response

So, already we know how to compute the frequency response of an autoregressive filter. Here it is, plotted using $n p . \operatorname{abs}((1+0.3 * n p \cdot \exp (-1 j * o m e g a)) /(1-0.8 * n p \cdot \exp (-1 j * o m e g a)))$

$$
|H(\omega)|=\left(1+0.3 e^{j \omega}\right) /\left(1-0.8 e^{-j \omega}\right)
$$

Outline

(1) Review: Z Transform
(2) Autoregressive Difference Equations
(3) Finite vs. Infinite Impulse Response
(4) Impulse Response and Transfer Function of a First-Order Autoregressive Filter
(5) Finding the Poles and Zeros of $\mathrm{H}(\mathrm{z})$
(6) Summary

Impulse Response of an Autoregressive Filter

One way to find the impulse response of an autoregressive filter is the same as for any other filter: feed in an impulse, $x[n]=\delta[n]$, and what comes out is the impulse response, $y[n]=h[n]$.

$$
\begin{aligned}
& h[n]=\delta[n]+0.3 \delta[n-1]+0.8 h[n-1] \\
& h[n]=0, \quad n<0 \\
& h[0]=\delta[0]=1 \\
& h[1]=0+0.3 \delta[0]+0.8 h[0]=1.1 \\
& h[2]=0+0+0.8 h[1]=0.88 \\
& h[3]=0+0+0.8 h[2]=0.704 \\
& \vdots \\
& h[n]=1.1(0.8)^{n-1} \quad \text { if } n \geq 1
\end{aligned}
$$

FIR vs. IIR Filters

- An autoregressive filter is also known as an infinite impulse response (IIR) filter, because $h[n]$ is infinitely long (never ends).
- A difference equation with only feedforward terms (like we saw in the last lecture) is called a finite impulse response (FIR) filter, because $h[n]$ has finite length.

General form of an FIR filter

$$
y[n]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

This filter has an impulse response $(h[n])$ that is $M+1$ samples long.

- The b_{k} 's are called feedforward coefficients, because they feed $x[n]$ forward into $y[n]$.

General form of an IIR filter

$$
\sum_{\ell=0}^{N} a_{\ell} y[n-\ell]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

- The a_{ℓ} 's are caled feedback coefficients, because they feed $y[n]$ back into itself.

General form of an IIR filter

$$
\sum_{\ell=0}^{N} a_{\ell} y[n-\ell]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

Example:

$$
\begin{aligned}
y[n] & =x[n]+0.3 x[n-1]+0.8 y[n-1] \\
b_{0} & =1 \\
b_{1} & =0.3 \\
a_{0} & =1 \\
a_{1} & =-0.8
\end{aligned}
$$

Outline

(1) Review: Z Transform
(2) Autoregressive Difference Equations
(3) Finite vs. Infinite Impulse Response
4. Impulse Response and Transfer Function of a First-Order Autoregressive Filter
(5) Finding the Poles and Zeros of $\mathrm{H}(\mathrm{z})$
(6) Summary

First-Order Feedback-Only Filter

Let's find the general form of $h[n]$, for the simplest possible autoregressive filter: a filter with one feedback term, and no feedforward terms, like this:

$$
y[n]=x[n]+a y[n-1],
$$

where a is any constant (positive, negative, real, or complex).

Impulse Response of a First-Order Filter

We can find the impulse response by putting in $x[n]=\delta[n]$, and getting out $y[n]=h[n]$:

$$
h[n]=\delta[n]+a h[n-1] .
$$

Recursive computation gives

$$
\begin{aligned}
h[0] & =1 \\
h[1] & =a \\
h[2] & =a^{2} \\
\vdots & \\
h[n] & =a^{n} u[n]
\end{aligned}
$$

where we use the notation $u[n]$ to mean the "unit step function,"

$$
u[n]= \begin{cases}1 & n \geq 0 \\ 0 & n<0\end{cases}
$$

Impulse Response of Stable First-Order Filters

The coefficient, a, can be positive, negative, or even complex. If a is complex, then $h[n]$ is also complex-valued.

Impulse Response of Unstable First-Order Filters

If $|a|>1$, then the impulse response grows exponentially. If $|a|=1$, then the impulse response never dies away. In either case, we say the filter is "unstable."

$$
h[n]=(1.1)^{n} u[n]
$$

Instability

- A stable filter is one that always generates finite outputs ($|y[n]|$ finite) for every possible finite input $(|x[n]|$ finite $)$.
- An unstable filter is one that, at least sometimes, generates infinite outputs, even if the input is finite.
- A first-order IIR filter is stable if and only if $|a|<1$.

Transfer Function of a First-Order Filter

We can find the transfer function by taking the Z-transform of each term in this equation equation:

$$
\begin{aligned}
y[n] & =x[n]+a y[n-1] \\
Y(z) & =X(z)+a z^{-1} Y(z)
\end{aligned}
$$

which we can solve to get

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-a z^{-1}}
$$

Frequency Response of a First-Order Filter

If the filter is stable $(|a|<1)$, then we can find the frequency response by plugging in $z=e^{j \omega}$:

$$
H(\omega)=\left.H(z)\right|_{z=e^{j \omega}}=\frac{1}{1-a e^{-j \omega}} \quad \text { if }|a|<1
$$

This formula only works if $|a|<1$.

Frequency Response of a First-Order Filter

$$
H(\omega)=\frac{1}{1-a e^{-j \omega}} \quad \text { if }|a|<1
$$

$h[n]=(0.9)^{n} u[n]$

$h[n]=(-0.9)^{n} u[n]$

$H(\omega)=1 /\left(1-(0.9) e^{-j \omega}\right)$

$H(\omega)=1 /\left(1-(-0.9) e^{-j \omega}\right)$

Transfer Function \leftrightarrow Impulse Response

For FIR filters, we say that $h[n] \leftrightarrow H(z)$ are a Z-transform pair.
Let's assume that the same thing is true for IIR filters, and see if it works.

$$
\begin{aligned}
H(z) & =\sum_{n=-\infty}^{\infty} h[n] z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} z^{-n}
\end{aligned}
$$

This is a standard geometric series, with a ratio of $a z^{-1}$. As long as $|a|<1$, we can use the formula for an infinite-length geometric series, which is:

$$
H(z)=\frac{1}{1-a z^{-1}},
$$

So we confirm that $h[n] \leftrightarrow H(z)$ for both FIR and IIR filters, as long as $|a|<1$.

Outline

(1) Review: Z Transform
(2) Autoregressive Difference Equations
(3) Finite vs. Infinite Impulse Response
(4) Impulse Response and Transfer Function of a First-Order Autoregressive Filter
(5) Finding the Poles and Zeros of $\mathrm{H}(\mathrm{z})$
(6) Summary

First-Order Filter

Now, let's find the transfer function of a general first-order filter, including BOTH feedforward and feedback delays:

$$
y[n]=x[n]+b x[n-1]+a y[n-1],
$$

where we'll assume that $|a|<1$, so the filter is stable.

Transfer Function of a First-Order Filter

We can find the transfer function by taking the Z-transform of each term in this equation equation:

$$
\begin{aligned}
y[n] & =x[n]+b x[n-1]+a y[n-1] \\
Y(z) & =X(z)+b z^{-1} X(z)+a z^{-1} Y(z)
\end{aligned}
$$

which we can solve to get

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{1+b z^{-1}}{1-a z^{-1}}
$$

Treating $H(z)$ as a Ratio of Two Polynomials

Notice that $H(z)$ is the ratio of two polynomials:

$$
H(z)=\frac{1+b z^{-1}}{1-a z^{-1}}=\frac{z+b}{z-a}
$$

- $z=-b$ is called the zero of $H(z)$, meaning that $H(-b)=0$.
- $z=a$ is called the pole of $H(z)$, meaning that $H(a)=\infty$

The Pole and Zero of $H(z)$

- The pole, $z=a$, and zero, $z=-b$, are the values of z for which $H(z)=\infty$ and $H(z)=0$, respectively.
- But what does that mean? We know that for $z=e^{j \omega}, H(z)$ is just the frequency response:

$$
H(\omega)=\left.H(z)\right|_{z=e^{j \omega}}
$$

but the pole and zero do not normally have unit magnitude.

- What it means is that:
- When $\omega=\angle(-b)$, then $|H(\omega)|$ is as close to a zero as it can possibly get, so at that that frequency, $|H(\omega)|$ is as low as it can get.
- When $\omega=\angle a$, then $|H(\omega)|$ is as close to a pole as it can possibly get, so at that that frequency, $|H(\omega)|$ is as high as it can get.

Vectors in the Complex Plane

Suppose we write $|H(z)|$ like this:

$$
|H(z)|=\frac{|z+b|}{|z-a|}
$$

Now let's evaluate at $z=e^{j \omega}$:

$$
|H(\omega)|=\frac{\left|e^{j \omega}+b\right|}{\left|e^{j \omega}-a\right|}
$$

What we've discovered is that $|H(\omega)|$ is small when the vector distance $\left|e^{j \omega}+b\right|$ is small, but LARGE when the vector distance $\left|e^{j \omega}-a\right|$ is small.

Why This is Useful

Now we have another way of thinking about frequency response.

- Instead of just LPF, HPF, or BPF, we can design a filter to have zeros at particular frequencies, $\angle(-b)$, AND to have poles at particular frequencies, $\angle a$,
- The magnitude $|H(\omega)|$ is $\left|e^{j \omega}+b\right| /\left|e^{j \omega}-a\right|$.
- Using this trick, we can design filters that have much more subtle frequency responses than just an ideal LPF, BPF, or HPF.

Outline

(1) Review: Z Transform
(2) Autoregressive Difference Equations
(3) Finite vs. Infinite Impulse Response
(4) Impulse Response and Transfer Function of a First-Order Autoregressive Filter
(5) Finding the Poles and Zeros of $\mathrm{H}(\mathrm{z})$
(6) Summary

Summary: Autoregressive Filter

- An autoregressive filter is a filter whose current output, $y[n]$, depends on past values of the output.
- An autoregressive filter is also called infinite impulse response (IIR), because $h[n]$ has infinite length.
- A filter with only feedforward coefficients, and no feedback coefficients, is called finite impulse response (FIR), because $h[n]$ has finite length (its length is just the number of feedforward terms in the difference equation).
- The first-order, feedback-only autoregressive filter has this impulse response and transfer function:

$$
h[n]=a^{n} u[n] \leftrightarrow H(z)=\frac{1}{1-a z^{-1}}
$$

Summary: Poles and Zeros

A first-order autoregressive filter,

$$
y[n]=x[n]+b x[n-1]+a y[n-1],
$$

has the impulse response and transfer function

$$
h[n]=a^{n} u[n]+b a^{n-1} u[n-1] \leftrightarrow H(z)=\frac{1+b z^{-1}}{1-a z^{-1}},
$$

where a is called the pole of the filter, and $-b$ is called its zero.

