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Review: DTFT

The DTFT (discrete time Fourier transform) of any signal is X (ω),
given by

X (ω) =
∞∑

n=−∞
x [n]e−jωn

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω

Particular useful examples include:

f [n] = δ[n]↔ F (ω) = 1

g [n] = δ[n − n0]↔ G (ω) = e−jωn0
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Properties of the DTFT

Properties worth knowing include:

0 Periodicity: X (ω + 2π) = X (ω)

1 Linearity:

z [n] = ax [n] + by [n]↔ Z (ω) = aX (ω) + bY (ω)

2 Time Shift: x [n − n0]↔ e−jωn0X (ω)

3 Frequency Shift: e jω0nx [n]↔ X (ω − ω0)

4 Filtering is Convolution:

y [n] = h[n] ∗ x [n]↔ Y (ω) = H(ω)X (ω)
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What is “Ideal”?

The definition of “ideal” depends on your application. Let’s start
with the task of lowpass filtering. Let’s define an ideal lowpass
filter, Y (ω) = LI (ω)X (ω), as follows:

Y (ω) =

{
X (ω) |ω| ≤ ωL,

0 otherwise,

where ωL is some cutoff frequency that we choose. For example, to
de-noise a speech signal we might choose ωL = 2π2400/Fs ,
because most speech energy is below 2400Hz. This definition gives:

LI (ω) =

{
1 |ω| ≤ ωL

0 otherwise
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Ideal Lowpass Filter
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How can we implement an ideal LPF?

1 Use np.fft.fft to find X [k], set Y [k] = X [k] only for
2πk
N < ωL, then use np.fft.ifft to convert back into the

time domain?

It sounds easy, but. . .
np.fft.fft is finite length, whereas the DTFT is infinite
length. Truncation to finite length causes artifacts.

2 Use pencil and paper to inverse DTFT LI (ω) to lI [n], then use
np.convolve to convolve lI [n] with x [n].

It sounds more difficult.
But actually, we only need to find lI [n] once, and then we’ll be
able to use the same formula for ever afterward.
This method turns out to be both easier and more effective in
practice.
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Inverse DTFT of LI (ω)

The ideal LPF is

LI (ω) =

{
1 |ω| ≤ ωL

0 otherwise

The inverse DTFT is

lI [n] =
1

2π

∫ π

−π
LI (ω)e jωndω

Combining those two equations gives

lI [n] =
1

2π

∫ ωL

−ωL

e jωndω



DTFT Ideal LPF Ideal HPF Ideal BPF Finite-Length Even Length Summary

Solving the integral

The ideal LPF is

lI [n] =
1

2π

∫ ωL

−ωL

e jωndω =
1

2π

(
1

jn

)[
e jωn

]ωL

−ωL
=

1

2π

(
1

jn

)
(2j sin(ωLn))

So

lI [n] =
sin(ωLn)

πn
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lI [n] = sin(ωLn)
πn

sin(ωLn)
πn is undefined when n = 0

limn→0
sin(ωLn)
πn = ωL

π

So let’s define lI [0] = ωL
π .
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lI [n] = sin(ωLn)
πn
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Ideal Highpass Filter

An ideal high-pass filter passes all
frequencies above ωH :

HI (ω) =

{
1 |ω| > ωH

0 otherwise

Ideal Highpass Filter
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Ideal Highpass Filter

. . . except for one problem: H(ω) is periodic with a period of 2π.
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The highest frequency is ω = π

The highest frequency, in discrete time, is ω = π. Frequencies that
seem higher, like ω = 1.1π, are actually lower. This phenomenon is
called “aliasing.”



DTFT Ideal LPF Ideal HPF Ideal BPF Finite-Length Even Length Summary

Redefining “Lowpass” and “Highpass”

Let’s redefine “lowpass” and “highpass.” The ideal LPF is

LI (ω) =

{
1 |ω| ≤ ωL,

0 ωL < |ω| ≤ π.

The ideal HPF is

HI (ω) =

{
0 |ω| < ωH ,

1 ωH ≤ |ω| ≤ π.

Both of them are periodic with period 2π.
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Inverse DTFT of HI (ω)

The easiest way to find hI [n] is to use linearity:

HI (ω) = 1− LI (ω)

Therefore:

hI [n] = δ[n]− lI [n]

= δ[n]− sin(ωHn)

πn
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hI [n] = δ[n]− sin(ωHn)
πn
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hI [n] = δ[n]− sin(ωLn)
πn
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Ideal Bandpass Filter

An ideal band-pass filter passes all
frequencies between ωH and ωL:

BI (ω) =

{
1 ωH ≤ |ω| ≤ ωL

0 otherwise

(and, of course, it’s also periodic
with period 2π).

Ideal Bandpass Filter
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Inverse DTFT of BI (ω)

The easiest way to find bI [n] is to use linearity:

BI (ω) = LI (ω|ωL)− LI (ω|ωH)

Therefore:

bI [n] =
sin(ωLn)

πn
− sin(ωHn)

πn
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bI [n] = sin(ωLn)
πn − sin(ωHn)

πn
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bI [n] = sin(ωLn)
πn − sin(ωHn)

πn
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Ideal Filters are Infinitely Long

All of the ideal filters, lI [n] and so on, are infinitely long.

In videos so far, I’ve faked infinite length by just making lI [n]
more than twice as long as x [n].

If x [n] is very long (say, a 24-hour audio recording), you
probably don’t want to do that (computation=expensive)
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Finite Length by Truncation

We can force lI [n] to be finite length by just truncating it, say, to
2M + 1 samples:

l [n] =

{
lI [n] −M ≤ n ≤ M

0 otherwise
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Truncation Causes Frequency Artifacts

The problem with truncation is that it causes artifacts.
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Windowing Reduces the Artifacts

We can reduce the artifacts (a lot) by windowing lI [n], instead of
just truncating it:

l [n] =

{
w [n]lI [n] −M ≤ n ≤ M

0 otherwise

where w [n] is a window that tapers smoothly down to near zero at
n = ±M, e.g., a Hamming window:

w [n] = 0.54 + 0.46 cos

(
2πn

2M

)



DTFT Ideal LPF Ideal HPF Ideal BPF Finite-Length Even Length Summary

Windowing a Lowpass Filter
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Windowing Reduces the Artifacts
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Even Length Filters

Often, we’d like our filter l [n] to be even length, e.g., 200 samples
long, or 256 samples. We can’t do that with this definition:

l [n] =

{
w [n]lI [n] −M ≤ n ≤ M

0 otherwise

. . . because 2M + 1 is always an odd number.
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Even Length Filters using Delay

We can solve this problem using the time-shift property of the
DTFT:

z [n] = x [n − n0] ↔ Z (ω) = e−jωn0X (ω)
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Even Length Filters using Delay

Let’s delay the ideal filter by exactly M − 0.5 samples, for any
integer M:

z [n] = lI [n − (M − 0.5)] =
sin
(
ω
(
n −M + 1

2

))
π
(
n −M + 1

2

)
I know that sounds weird. But notice the symmetry it gives us.
The whole signal is symmetric w.r.t. sample n = M − 0.5. So
z [M − 1] = z [M], and z [M − 2] = z [M + 1], and so one, all the
way out to

z [0] = z [2M − 1] =
sin
(
ω
(
M − 1

2

))
π
(
M − 1

2

)
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Even Length Filters using Delay
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Even Length Filters using Delay

Apply the time delay property:

z [n] = lI [n − (M − 0.5)] ↔ Z (ω) = e−jω(M−0.5)LI (ω),

and then notice that

|e−jω(M−0.5)| = 1

So
|Z (ω)| = |LI (ω)|
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Even Length Filters using Delay
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Even Length Filters using Delay and Windowing

Now we can create an even-length filter by windowing the delayed
filter:

l [n] =

{
w [n]lI [n − (M − 0.5)] 0 ≤ n ≤ (2M − 1)

0 otherwise

where w [n] is a Hamming window defined for the samples
0 ≤ m ≤ 2M − 1:

w [n] = 0.54− 0.46 cos

(
2πn

2M − 1

)
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Even Length Filters using Delay and Windowing
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Even Length Filters using Delay and Windowing
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lI [n] = sin(ωLn)
πn
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Summary: Ideal Filters

Ideal Lowpass Filter:

LI (ω) =

{
1 |ω| ≤ ωL,

0 ωL < |ω| ≤ π.
↔ lI [m] =

sin(ωLn)

πn

Ideal Highpass Filter:

HI (ω) = 1− LI (ω) ↔ hI [n] = δ[n]− sin(ωHn)

πn

Ideal Bandpass Filter:

BI (ω) = LI (ω|ωL)−LI (ω|ωH) ↔ bI [n] =
sin(ωLn)

πn
−sin(ωHn)

πn
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Summary: Practical Filters

Odd Length:

h[n] =

{
hI [n]w [n] −M ≤ n ≤ M

0 otherwise

Even Length:

h[n] =

{
hI [n − (M − 0.5)]w [n] 0 ≤ n ≤ 2M − 1

0 otherwise

where w [n] is a window with tapered ends, e.g.,

w [n] =

{
0.54− 0.46 cos

(
2πn
L−1

)
0 ≤ n ≤ L− 1

0 otherwise
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