Lecture 10: Ideal Filters

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2020
(1) Review: DTFT
(2) Ideal Lowpass Filter
(3) Ideal Highpass Filter

4 Ideal Bandpass Filter
(5) Realistic Filters: Finite Length
(6) Realistic Filters: Even Length
(7) Summary

Outline

(1) Review: DTFT
(2) Ideal Lowpass Filter
(3) Ideal Highpass Filter
(4) Ideal Bandpass Filter
(5) Realistic Filters: Finite Length
(6) Realistic Filters: Even Length
(7) Summary

Review: DTFT

The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$
\begin{aligned}
& X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega
\end{aligned}
$$

Particular useful examples include:

$$
\begin{gathered}
f[n]=\delta[n] \leftrightarrow F(\omega)=1 \\
g[n]=\delta\left[n-n_{0}\right] \leftrightarrow G(\omega)=e^{-j \omega n_{0}}
\end{gathered}
$$

Properties of the DTFT

Properties worth knowing include:
(0) Periodicity: $X(\omega+2 \pi)=X(\omega)$
(1) Linearity:

$$
z[n]=a x[n]+b y[n] \leftrightarrow Z(\omega)=a X(\omega)+b Y(\omega)
$$

(2) Time Shift: $x\left[n-n_{0}\right] \leftrightarrow e^{-j \omega n_{0}} X(\omega)$
(3) Frequency Shift: $e^{j \omega_{0} n} x[n] \leftrightarrow X\left(\omega-\omega_{0}\right)$
(4) Filtering is Convolution:

$$
y[n]=h[n] * x[n] \leftrightarrow Y(\omega)=H(\omega) X(\omega)
$$

Outline

(2) Ideal Lowpass Filter

3 Ideal Highpass Filter
4. Ideal Bandpass Filter
(5) Realistic Filters: Finite Length
(6) Realistic Filters: Even Length
(7) Summary

What is "Ideal"?

The definition of "ideal" depends on your application. Let's start with the task of lowpass filtering. Let's define an ideal lowpass filter, $Y(\omega)=L_{I}(\omega) X(\omega)$, as follows:

$$
Y(\omega)= \begin{cases}X(\omega) & |\omega| \leq \omega_{L} \\ 0 & \text { otherwise }\end{cases}
$$

where ω_{L} is some cutoff frequency that we choose. For example, to de-noise a speech signal we might choose $\omega_{L}=2 \pi 2400 / F_{S}$, because most speech energy is below 2400 Hz . This definition gives:

$$
L_{l}(\omega)= \begin{cases}1 & |\omega| \leq \omega_{L} \\ 0 & \text { otherwise }\end{cases}
$$

Ideal Lowpass Filter

How can we implement an ideal LPF?

(1) Use np.fft.fft to find $X[k]$, set $Y[k]=X[k]$ only for $\frac{2 \pi k}{N}<\omega_{L}$, then use np.fft.ifft to convert back into the time domain?

- It sounds easy, but...
- np.fft.fft is finite length, whereas the DTFT is infinite length. Truncation to finite length causes artifacts.
(2) Use pencil and paper to inverse DTFT $L_{I}(\omega)$ to $I_{I}[n]$, then use np. convolve to convolve $I_{/}[n]$ with $x[n]$.
- It sounds more difficult.
- But actually, we only need to find $l_{l}[n]$ once, and then we'll be able to use the same formula for ever afterward.
- This method turns out to be both easier and more effective in practice.

Inverse DTFT of $L_{l}(\omega)$

The ideal LPF is

$$
L_{I}(\omega)= \begin{cases}1 & |\omega| \leq \omega_{L} \\ 0 & \text { otherwise }\end{cases}
$$

The inverse DTFT is

$$
I_{l}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} L_{I}(\omega) e^{j \omega n} d \omega
$$

Combining those two equations gives

$$
I_{I}[n]=\frac{1}{2 \pi} \int_{-\omega_{L}}^{\omega_{L}} e^{j \omega n} d \omega
$$

Solving the integral

The ideal LPF is
$I_{I}[n]=\frac{1}{2 \pi} \int_{-\omega_{L}}^{\omega_{L}} e^{j \omega n} d \omega=\frac{1}{2 \pi}\left(\frac{1}{j n}\right)\left[e^{j \omega n}\right]_{-\omega_{L}}^{\omega_{L}}=\frac{1}{2 \pi}\left(\frac{1}{j n}\right)\left(2 j \sin \left(\omega_{L} n\right)\right)$
So

$$
l_{l}[n]=\frac{\sin \left(\omega_{L} n\right)}{\pi n}
$$

Ideal LPF 000000

$$
l_{1}[n]=\frac{\sin (\omega i n)}{\pi(n)}
$$

- $\frac{\sin \left(\omega_{L} n\right)}{\pi n}$ is undefined when $n=0$
- $\lim _{n \rightarrow 0} \frac{\sin \left(\omega_{L} n\right)}{\pi n}=\frac{\omega_{L}}{\pi}$
- So let's define $I_{l}[0]=\frac{\omega_{L}}{\pi}$.

$$
I_{/}[n]=\frac{\sin \left(\omega_{L} n\right)}{\pi n}
$$

Outline

(1) Review: DTFT
(2) Ideal Lowpass Filter
(3) Ideal Highpass Filter
(4) Ideal Bandpass Filter
(5) Realistic Filters: Finite Length
(6) Realistic Filters: Even Length
(7) Summary

Ideal Highpass Filter

Ideal Highpass Filter

An ideal high-pass filter passes all frequencies above ω_{H} :

$$
H_{l}(\omega)= \begin{cases}1 & |\omega|>\omega_{H} \\ 0 & \text { otherwise }\end{cases}
$$

Ideal Highpass Filter

...except for one problem: $H(\omega)$ is periodic with a period of 2π.

Ideal Highpass Filter

The highest frequency is $\omega=\pi$

The highest frequency, in discrete time, is $\omega=\pi$. Frequencies that seem higher, like $\omega=1.1 \pi$, are actually lower. This phenomenon is called "aliasing."

Redefining "Lowpass" and "Highpass"

Let's redefine "lowpass" and "highpass." The ideal LPF is

$$
L_{l}(\omega)= \begin{cases}1 & |\omega| \leq \omega_{L} \\ 0 & \omega_{L}<|\omega| \leq \pi\end{cases}
$$

The ideal HPF is

$$
H_{l}(\omega)= \begin{cases}0 & |\omega|<\omega_{H} \\ 1 & \omega_{H} \leq|\omega| \leq \pi\end{cases}
$$

Both of them are periodic with period 2π.

Inverse DTFT of $H_{l}(\omega)$

The easiest way to find $h_{l}[n]$ is to use linearity:

$$
H_{l}(\omega)=1-L_{l}(\omega)
$$

Therefore:

$$
\begin{aligned}
h_{l}[n] & =\delta[n]-l_{l}[n] \\
& =\delta[n]-\frac{\sin \left(\omega_{H} n\right)}{\pi n}
\end{aligned}
$$

$h_{l}[n]=\delta[n]-\frac{\sin \left(\omega_{\mu} n\right)}{\pi n}$

$\mathrm{H}_{-} \mathrm{l}$ (lomega), cutoff $=\pi / 2$

H_l(lomega), cutoff $=3 \pi / 4$

$$
h_{/}[n]=\delta[n]-\frac{\sin \left(\omega_{L} n\right)}{\pi n}
$$

Outline

(1) Review: DTFT
(2) Ideal Lowpass Filter
(3) Ideal Highpass Filter

4 Ideal Bandpass Filter
(5) Realistic Filters: Finite Length
(6) Realistic Filters: Even Length
(7) Summary

Ideal Bandpass Filter

An ideal band-pass filter passes all frequencies between ω_{H} and ω_{L} :

$$
B_{/}(\omega)= \begin{cases}1 & \omega_{H} \leq|\omega| \leq \omega_{L} \\ 0 & \text { otherwise }\end{cases}
$$

(and, of course, it's also periodic with period 2π).

Ideal Bandpass Filter

Inverse DTFT of $B_{l}(\omega)$

The easiest way to find $b_{l}[n]$ is to use linearity:

$$
B_{I}(\omega)=L_{I}\left(\omega \mid \omega_{L}\right)-L_{I}\left(\omega \mid \omega_{H}\right)
$$

Therefore:

$$
b_{l}[n]=\frac{\sin \left(\omega_{L} n\right)}{\pi n}-\frac{\sin \left(\omega_{H} n\right)}{\pi n}
$$

$$
b_{r}[n]=\frac{\sin \left(\omega_{L} n\right)}{\pi n}-\frac{\sin \left(\omega_{H} n\right)}{\pi n}
$$

$B_{l}(\omega)$, cutoffs $=3 \pi / 8,5 \pi / 8$

$B_{l}(\omega)$, cutoffs $=5 \pi / 8,7 \pi / 8$

$b_{l}[n]$, cutoffs $=5 \pi / 8,7 \pi / 8$

$$
b_{/}[n]=\frac{\sin \left(\omega_{L} n\right)}{\pi n}-\frac{\sin \left(\omega_{H} n\right)}{\pi n}
$$

Noisy $x[m]$

Outline

(1) Review: DTFT
(2) Ideal Lowpass Filter

3 Ideal Highpass Filter
(4) Ideal Bandpass Filter
(5) Realistic Filters: Finite Length
(6) Realistic Filters: Even Length
(7) Summary

Ideal Filters are Infinitely Long

- All of the ideal filters, $I_{I}[n]$ and so on, are infinitely long.
- In videos so far, I've faked infinite length by just making $l_{l}[n]$ more than twice as long as $x[n]$.
- If $x[n]$ is very long (say, a 24-hour audio recording), you probably don't want to do that (computation=expensive)

Finite Length by Truncation

We can force $I_{I}[n]$ to be finite length by just truncating it, say, to $2 M+1$ samples:

$$
I[n]= \begin{cases}l_{l}[n] & -M \leq n \leq M \\ 0 & \text { otherwise }\end{cases}
$$

Truncation Causes Frequency Artifacts

The problem with truncation is that it causes artifacts.

Windowing Reduces the Artifacts

We can reduce the artifacts (a lot) by windowing $l_{l}[n]$, instead of just truncating it:

$$
I[n]= \begin{cases}w[n] l_{l}[n] & -M \leq n \leq M \\ 0 & \text { otherwise }\end{cases}
$$

where $w[n]$ is a window that tapers smoothly down to near zero at $n= \pm M$, e.g., a Hamming window:

$$
w[n]=0.54+0.46 \cos \left(\frac{2 \pi n}{2 M}\right)
$$

Windowing a Lowpass Filter

Truncated $I[n]$, cutoff $=\pi / 4$

Hamming Window $w[n]$, Length $=19$

Windowed Filter $w[n] /[[n]$, Length=19

Windowing Reduces the Artifacts

Outline

(1) Review: DTFT
(2) Ideal Lowpass Filter

3 Ideal Highpass Filter
(4) Ideal Bandpass Filter
(5) Realistic Filters: Finite Length
(6) Realistic Filters: Even Length
(7) Summary

Even Length Filters

Often, we'd like our filter $I[n]$ to be even length, e.g., 200 samples long, or 256 samples. We can't do that with this definition:

$$
I[n]= \begin{cases}w[n] l_{l}[n] & -M \leq n \leq M \\ 0 & \text { otherwise }\end{cases}
$$

\ldots because $2 M+1$ is always an odd number.

Even Length Filters using Delay

We can solve this problem using the time-shift property of the DTFT:

$$
z[n]=x\left[n-n_{0}\right] \quad \leftrightarrow \quad Z(\omega)=e^{-j \omega n_{0}} X(\omega)
$$

Even Length Filters using Delay

Let's delay the ideal filter by exactly $M-0.5$ samples, for any integer M :

$$
z[n]=l_{l}[n-(M-0.5)]=\frac{\sin \left(\omega\left(n-M+\frac{1}{2}\right)\right)}{\pi\left(n-M+\frac{1}{2}\right)}
$$

I know that sounds weird. But notice the symmetry it gives us. The whole signal is symmetric w.r.t. sample $n=M-0.5$. So $z[M-1]=z[M]$, and $z[M-2]=z[M+1]$, and so one, all the way out to

$$
z[0]=z[2 M-1]=\frac{\sin \left(\omega\left(M-\frac{1}{2}\right)\right)}{\pi\left(M-\frac{1}{2}\right)}
$$

Even Length Filters using Delay

Ideal LPF, delayed by 9.5 samples

Even Length Filters using Delay

Apply the time delay property:

$$
z[n]=I_{I}[n-(M-0.5)] \quad \leftrightarrow \quad Z(\omega)=e^{-j \omega(M-0.5)} L_{l}(\omega),
$$

and then notice that

$$
\left|e^{-j \omega(M-0.5)}\right|=1
$$

So

$$
|Z(\omega)|=\left|L_{l}(\omega)\right|
$$

Even Length Filters using Delay

Ideal LPF, delayed by 9.5 samples

Magnitude of delayed filter $=|L(\omega)|$

Phase of delayed filter $\angle L(\omega)=-j 9.5 \omega$

Even Length Filters using Delay and Windowing

Now we can create an even-length filter by windowing the delayed filter:

$$
I[n]= \begin{cases}w[n] / \iota[n-(M-0.5)] & 0 \leq n \leq(2 M-1) \\ 0 & \text { otherwise }\end{cases}
$$

where $w[n]$ is a Hamming window defined for the samples $0 \leq m \leq 2 M-1$:

$$
w[n]=0.54-0.46 \cos \left(\frac{2 \pi n}{2 M-1}\right)
$$

Even Length Filters using Delay and Windowing

Truncated Delayed $/[n]$, cutoff $=\pi / 4$

Hamming Window $w[n]$, Length $=20$

Windowed Delayed Filter $w[n] /[n-9.5]$, Length $=21$

Even Length Filters using Delay and Windowing

$$
I_{/}[n]=\frac{\sin \left(\omega_{L} n\right)}{\pi n}
$$

Noisy $x[m]$

$y[n]=\Pi[n]^{*} x[n]$

K<U

Outline

(1) Review: DTFT
(2) Ideal Lowpass Filter

3 Ideal Highpass Filter
(4) Ideal Bandpass Filter
(5) Realistic Filters: Finite Length
(6) Realistic Filters: Even Length
(7) Summary

Summary: Ideal Filters

- Ideal Lowpass Filter:

$$
L_{l}(\omega)=\left\{\begin{array}{ll}
1 & |\omega| \leq \omega_{L}, \\
0 & \omega_{L}<|\omega| \leq \pi .
\end{array} \quad \leftrightarrow \quad I_{I}[m]=\frac{\sin \left(\omega_{L} n\right)}{\pi n}\right.
$$

- Ideal Highpass Filter:

$$
H_{l}(\omega)=1-L_{l}(\omega) \quad \leftrightarrow \quad h_{l}[n]=\delta[n]-\frac{\sin \left(\omega_{H} n\right)}{\pi n}
$$

- Ideal Bandpass Filter:

$$
B_{I}(\omega)=L_{l}\left(\omega \mid \omega_{L}\right)-L_{l}\left(\omega \mid \omega_{H}\right) \leftrightarrow \quad b_{l}[n]=\frac{\sin \left(\omega_{L} n\right)}{\pi n}-\frac{\sin \left(\omega_{H} n\right)}{\pi n}
$$

Summary: Practical Filters

- Odd Length:

$$
h[n]= \begin{cases}h_{l}[n] w[n] & -M \leq n \leq M \\ 0 & \text { otherwise }\end{cases}
$$

- Even Length:

$$
h[n]= \begin{cases}h_{l}[n-(M-0.5)] w[n] & 0 \leq n \leq 2 M-1 \\ 0 & \text { otherwise }\end{cases}
$$

where $w[n]$ is a window with tapered ends, e.g.,

$$
w[n]= \begin{cases}0.54-0.46 \cos \left(\frac{2 \pi n}{L-1}\right) & 0 \leq n \leq L-1 \\ 0 & \text { otherwise }\end{cases}
$$

