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Review: DTFT

The DTFT (discrete time Fourier transform) of any signal is X (w),
given by

oo

X(w)= > x[n]ed*"

n=—0o0

x[n] = % X(w)e dw

—T
Particular useful examples include:

f[n] = 6[n] © F(w) =1

glnl = d[n — no] ¢ G(w) = e~
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Properties of the DTFT

Properties worth knowing include:
@ Periodicity: X(w + 27) = X(w)
©Q Linearity:

z[n] = ax[n] + by[n] <> Z(w) = aX(w) + bY (w)

@ Time Shift: x[n — ng] <+ e 7“0 X (w)
© Frequency Shift: e/“°"x[n] <+ X(w — wp)
@ Filtering is Convolution:

y[n] = h[n] % x[n] <> Y(w) = H(w)X(w)
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What is “ldeal”?

The definition of “ideal” depends on your application. Let's start
with the task of lowpass filtering. Let's define an ideal lowpass
filter, Y(w) = Lj(w)X(w), as follows:

Y(w) X(w) |w| <wyg,
w =
0 otherwise,

where w; is some cutoff frequency that we choose. For example, to
de-noise a speech signal we might choose w; = 272400/ F;,
because most speech energy is below 2400Hz. This definition gives:

Li(w) = {1 ) =

0 otherwise
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Ideal Lowpass Filter

[X(w)]

- -3w4 Y2 /4 0 w4 w2 3n/4




Ideal LPF
00®0000

How can we implement an ideal LPF?

Q Use np.fft.fft to find X[k], set Y[k] = X[k] only for
% < wi, then use np.fft.ifft to convert back into the
time domain?

e It sounds easy, but. ..
e np.fft.fft is finite length, whereas the DTFT is infinite

length. Truncation to finite length causes artifacts.
@ Use pencil and paper to inverse DTFT L;(w) to /j[n], then use
np.convolve to convolve /;[n] with x[n].

o It sounds more difficult.

e But actually, we only need to find /;[n] once, and then we'll be
able to use the same formula for ever afterward.

e This method turns out to be both easier and more effective in
practice.
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Inverse DTFT of L;(w)

The ideal LPF is

0 otherwise

Li(w) = {1 o] =

The inverse DTFT is
1 [ -
li[n] = / Ly(w)e*"dw
2t J_ .
Combining those two equations gives
wr

1 .
hnl = 0 [ &"dw

—wy
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Solving the integral

The ideal LPF is

L gy L (D e _ 1 (1) 1
Ii[n] = > ﬂULef dw = o (jn) G ]7% =5 <jn> (2jsin(wrn))
So

sin(wgn)

h[n] =

m™n
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sin(wy n)
N

Li(w), cutoff=r/4 h[n], cutoff=r/4
1 0.25 /‘I\
0.00 i
0 T T T T T T T T T T T T T
34 y2 v 0 w4 w2 34 -100 -75 -50 -25 00 25 50 75 100
Li(w), cutoff=m/2 hn], cutoff=m/2
| l N m
34 2z a4 0 w4 w2 34 -100 -75 -50 -25 00 25 50 75 100
Li(w), cutoff=3n/4 h[n], cutoff=3/4
19
/ \ ool
0 : : : —— ; e —
L L2 P ) 0 w4 W2 34 -10.0 -75 -50 -25 00 25 50 75 100
sin(wyn) - .
sinwn) s yundefined when n = 0
o lim sin(wpn) _ wy
n—0 n —

@ So let's define /;[0] = %L

L
gl
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//[n] __ sin wl_n)

Moisy x[m]

ol ’\/\,A/\V,\ NP .\ /
i AAGAVARER AV

2.5

Io - m]
0.5
0.0
_0'5 E T T T T T T
ylnl=lln1*x[n]
2.5
0.0

T T
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Ideal Highpass Filter
Ideal Highpass Filter . Hi(w)

An ideal high-pass filter passes all
frequencies above wy:

Hi(w) 1 |w| > wy 04
w) =
! 0 otherwise 02

- B4 w2 /4 0 4 w2 3n/4




Ideal HPF
0®00000

|deal Highpass Filter

.. .except for one problem: H(w) is periodic with a period of 2.

Ideal Highpass Filter

1.0

0.8 4

0.6

0.4+

0.2 4

0.0

T T
Sl /2 0 w2 n

S



Ideal HPF
00®0000

The highest frequency is w =7

The highest frequency, in discrete time, is w = w. Frequencies that
seem higher, like w = 1.1, are actually lower. This phenomenon is
called “aliasing.”

cos(0.00nn)=cos(2.00mnn)

1.0 4

0.5 1

0.0 4

-1.01

T T
—60 60

—40 —‘20 (I) 2‘0 4‘0
(=)be(+)



Ideal HPF
000e000

Redefining “Lowpass” and “Highpass”

Let's redefine “lowpass” and “highpass.” The ideal LPF is

L(w) 1 |w| <wy,
w) =
I 0 wr < lw| <.

The ideal HPF is

1 wy <|wl <.

{o w| < wh,

Both of them are periodic with period 2.
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Inverse DTFT of H,(w)

Hi(w)

10

0.8 4

0.6 1

0.4 4

0.2 4

0.0

The easiest way to find hy[n] is to use linearity:
H/(UJ) =1- L/(UJ)
Therefore:

hi[n] = o[n] — Ii[n]

o] — sin(wyn)

™n
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sin(wyn)
N

H_I(\omega), cutoff=m/4 hiln], cutoff=m/4
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hi[n] = o[n] —

2.5

0.0 A

0.5

0.0 A
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sin wl_n)

Moisy x[m]

’\/\,A/\V,\ NP .\ /
i AAGAVARER AV

[0 = m]

ylnl=hilnl*x[n]

T T
0 10 20 30 40 50 60
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S el

deal Bandpass Filter

An ideal band-pass filter passes all Bt
frequencies between wy and wy: =
0.8 ’T m
1 wy<|w| <fw 6
Bi(w) = H_|.|_ ‘ -
0 otherwise 04]

(and, of course, it's also periodic
with period 27).

- B4 w2 /4 0 4 w2 3n/4
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Inverse DTFT of B)(w)

Bi(w)

1.0 4

0.8

0.6 4

0.4 4

0.2 4

0.0

n 3w w2 w0 wWs w2 34

The easiest way to find by[n] is to use linearity:
B)(w) = Lj(w|wr) — Li(w|wpy)

Therefore:

bifn] = sin(wen)  sin(wyn)

m™n m™n
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b,[n] _ sinST Ln) sin(;Tuan)

Bi(w), cutoffs=m/8, 31/8 biln], cutoffs=mn/8, 3m/8
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b,[n] _ sin(wen)  sin(wpn)

TN Tn

Moisy x[m]
2.5 1 /\
0ol RAM A e /\J\\MJ
by[0 — m]
0.5 A
0.0
_0'5 - T T T T T T
ylnl=bilnl* x[n]
l -
0_
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Ideal Filters are Infinitely Long

o All of the ideal filters, /;[n] and so on, are infinitely long.

@ In videos so far, I've faked infinite length by just making /;[n]
more than twice as long as x[n].

e If x[n] is very long (say, a 24-hour audio recording), you
probably don’t want to do that (computation=expensive)
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Finite Length by Truncation

We can force /j[n] to be finite length by just truncating it, say, to
2M + 1 samples:

/ —-M<n<M
floj = M= S
0 otherwise
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Truncation Causes Frequency Artifacts

The problem with truncation is that it causes artifacts.

hln], cutoff=r/4 Li(w), cutoff=m/4
1.00
0.2 4 0.75 4
0.50
0.0 <7 N 0.25 4
0.00
-15 Jrencated [[n], cuteff=gd 15 . 3w4 w2 Lia cuboff=d w2 3ws
1.00
0.2 0.75
0.50
b, A 0.25 4
o0 ~ =
0.00

T T T T T T T
-15 -10 -5 0 5 10 15 T -3m4 2 g4 ) wa w2 34 n
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Windowing Reduces the Artifacts

We can reduce the artifacts (a lot) by windowing /;[n], instead of
just truncating it:

1] w[nlj[n] —M<n<M
n| =
0 otherwise

where w[n| is a window that tapers smoothly down to near zero at
n==+M, e.g., a Hamming window:

27mn
—0.54 4+ 0.4 e
w[n] =0.54+0 6cos(2M>
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Windowing a Lowpass Filter

Truncated /[n], cutoff=n/4

SN

0.00 p— p—

Hamming Window w[n], Length=19

T

0]

Windowed Filter w[nli[n], Length=19

AAN

0.00
T T

T T
-15 -10 -5 0
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Windowing Reduces the Artifacts

hin], cutoff=r/4 L(w), cutoff=m/4
1.0
0.2 4
/\ 0.5 4
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15 1o s 0 s 10 5 WA w2 WA 0 w4 e
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Even Length Filters

Often, we'd like our filter /[n] to be even length, e.g., 200 samples
long, or 256 samples. We can't do that with this definition:

0] wlnlhi[n] —M<n<M
nl =
0 otherwise

...because 2M + 1 is always an odd number.
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Even Length Filters using Delay

We can solve this problem using the time-shift property of the
DTFT:

zln=x[n—ng] & Z(w)=eT"X(w)
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Even Length Filters using Delay

Let's delay the ideal filter by exactly M — 0.5 samples, for any
integer M:
sin (w (n - M+ %))

T (n — M + %)

z[n|=Il[n—(M—-0.5)] =

| know that sounds weird. But notice the symmetry it gives us.
The whole signal is symmetric w.r.t. sample n= M — 0.5. So
z[M — 1] = z[M], and z[M — 2] = z[M + 1], and so one, all the
way out to

)

sin (w (M —
z[0] = z[2M — 1] = 75(/\(/’_%

~ Nl
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Even Length Filters using Delay

Ideal LPF, delayed by 9.5 samples

1.0 ~

0.8 A

0.6 1

0.4

0.2

0.0

_0.2 -

_0.4 -
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Even Length Filters using Delay

Apply the time delay property:

Z[n]=h[n—(M—=05)] < Z(w)=e M09y,
and then notice that
7jw(/\/l70.5)‘ -1

le

So
|Z(w)] = [Li(w)]
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Even Length Filters using Delay

Ideal LPF, delayed by 9.5 samples

0.25 ~

0.00 ~

0 5 10 15 20 25

Magnitude of delayed filter = |L{w)]|

[ [

T T T T T
-3n/4 /2 /4 0 w4 w2 3n/4

Phase of delayed filter LL(w)= -]9.5w

5_

—5 4

-3n/4 w2 /4 0 w4 w2 an/4
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Even Length Filters using Delay and Windowing

Now we can create an even-length filter by windowing the delayed
filter:

wn]lj[n—(M—-0.5)] 0<n<(2M—1)
/Il = 0 otherwise

where w[n] is a Hamming window defined for the samples
0<m<2M—-1:

21n
w([n] = 0.54 — 0.46 cos <2M - 1>
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Even Length Filters using Delay and Windowing

Truncated Delayed /[n], cutoff=m/4
0.25 1 /\
0.00 = o

-10 =5 0 5 10 15 20 25 30

Hamming Window w[n], Length=20
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Even Length Filters using Delay and Windowing

hln], cutoff=m/4

Li{w), cutoff=m/4
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Summary: Ideal Filters

@ |deal Lowpass Filter:

1wl < i
Lw) =41 Wl=en o hm] = Snten)
0 w < |w| <. mn

@ ldeal Highpass Filter:

H[((U) =1- LI(W) — h/[n] = (5[n] — M

m™n

@ Ideal Bandpass Filter:

Bi(w) = Liwlw)~Lilwlwn) © byln] = SmeLm) _sin(onn)

m™n ™n
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Summary: Practical Filters

e Odd Length:

] = hi[nlw[n] —M §.n <M
0 otherwise

@ Even Length:

h[]— hl[n—(M—05)]W[n] 0<n<2M—1
o 0 otherwise

where w[n] is a window with tapered ends, e.g.,

wlr] = {0.54— 0.46c0s (22) 0<n<L-1

0 otherwise
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