Lecture 9: Discrete-Time Fourier Transform

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis, Fall 2020
(1) Review: Frequency Response
(2) Discrete Time Fourier Transform
(3) Properties of the DTFT
(4) Examples
(5) Summary

Outline

(1) Review: Frequency Response
(2) Discrete Time Fourier Transform
(3) Properties of the DTFT

4 Examples
(5) Summary

What is Signal Processing, Really?

- When we process a signal, usually, we're trying to enhance the meaningful part, and reduce the noise.
- Spectrum helps us to understand which part is meaningful, and which part is noise.
- Convolution (a.k.a. filtering) is the tool we use to perform the enhancement.
- Frequency Response of a filter tells us exactly which frequencies it will enhance, and which it will reduce.

Review: Convolution

- A convolution is exactly the same thing as a weighted local average. We give it a special name, because we will use it very often. It's defined as:

$$
y[n]=\sum_{m} g[m] f[n-m]=\sum_{m} g[n-m] f[m]
$$

- We use the symbol $*$ to mean "convolution:"

$$
y[n]=g[n] * f[n]=\sum_{m} g[m] f[n-m]=\sum_{m} g[n-m] f[m]
$$

Review: DFT \& Fourier Series

Any periodic signal with a period of N samples, $x[n+N]=x[n]$, can be written as a weighted sum of pure tones,

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}
$$

which is a special case of the spectrum for periodic signals:
$\omega_{0}=\frac{2 \pi}{N} \frac{\text { radians }}{\text { sample }}, \quad F_{0}=\frac{1}{T_{0}} \frac{\text { cycles }}{\text { second }}, \quad T_{0}=\frac{N}{F_{s}} \frac{\text { seconds }}{\text { cycle }}, \quad N=\frac{\text { samples }}{\text { cycle }}$,
and

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}
$$

Tones in \rightarrow Tones out

Suppose I have a periodic input signal,

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}
$$

and I filter it,

$$
y[n]=h[n] * x[n],
$$

Then the output is a sum of pure tones, at the same frequencies as the input, but with different magnitudes and phases:

$$
y[n]=\frac{1}{N} \sum_{k=0}^{N-1} Y[k] e^{j 2 \pi k n / N}
$$

Frequency Response

Suppose we compute $y[n]=x[n] * h[n]$, where

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}, \text { and } \\
& y[n]=\frac{1}{N} \sum_{k=0}^{N-1} Y[k] e^{j 2 \pi k n / N} .
\end{aligned}
$$

The relationship between $Y[k]$ and $X[k]$ is given by the frequency response:

$$
Y[k]=H\left(k \omega_{0}\right) X[k]
$$

where

$$
H(\omega)=\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n}
$$

Outline

(1) Review: Frequency Response

(2) Discrete Time Fourier Transform
(3) Properties of the DTFT

4 Examples
(5) Summary

Aperiodic

An "aperiodic signal" is a signal that is not periodic. Periodic acoustic signals usually have a perceptible pitch frequency; aperiodic signals sound like wind noise, or clicks.

- Music: strings, woodwinds, and brass are periodic, drums and rain sticks are aperiodic.
- Speech: vowels and nasals are periodic, plosives and fricatives are aperiodic.
- Images: stripes are periodic, clouds are aperiodic.
- Bioelectricity: heartbeat is periodic, muscle contractions are aperiodic.

The spectrum of a periodic signal is given by its Fourier series, or equivalently in discrete time, by its discrete Fourier transform:

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi k n}{N}} \\
& X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}
\end{aligned}
$$

Aperiodic

The spectrum of an aperiodic signal we will now define to be exactly the same as that of a periodic signal except that, since it never repeats itself, its period has to be $N=\infty$:

$$
\begin{aligned}
& x[n] \approx \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi k n}{N}} \\
& X[k] \approx \lim _{N \rightarrow \infty} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}
\end{aligned}
$$

An Aperiodic Signal is like a Periodic Signal with Period $=\infty$
$x[n]$, periodic with period $T_{0}=200$ samples

Aperiodic

The spectrum of an aperiodic signal we will now define to be exactly the same as that of a periodic signal except that, since it never repeats itself, its period has to be $N=\infty$:

$$
\begin{aligned}
& x[n] \approx \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi k n}{N}} \\
& X[k] \approx \lim _{N \rightarrow \infty} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}
\end{aligned}
$$

But what does that mean? For example, what is $\frac{2 \pi k}{N}$? Let's try this definition: allow $k \rightarrow \infty$, and force ω to remain constant, where

$$
\omega=\frac{2 \pi k}{N}
$$

Aperiodic

Let's start with this one:

$$
x[n] \approx \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi k n}{N}}
$$

Imagine this as adding up a bunch of tall, thin rectangles, each with a height of $X[k]$, and a width of $d \omega=\frac{2 \pi}{N}$. In the limit, as $N \rightarrow \infty$, that becomes an integral:

$$
\begin{aligned}
x[n] & \approx \lim _{N \rightarrow \infty} \frac{1}{2 \pi} \sum_{k=0}^{N-1} \frac{2 \pi}{N} X[k] e^{j \frac{2 \pi k n}{N}} \\
& =\frac{1}{2 \pi} \int_{\omega=0}^{2 \pi} X(\omega) e^{j \omega n} d \omega,
\end{aligned}
$$

where we've used $X(\omega)=X[k]$ just because, as $k \rightarrow \infty$, it makes more sense to talk about $X(\omega)$.

Approximating the Integral as a Sum

Periodic

Now, let's go back to periodic signals. Notice that $e^{j 2 \pi}=1$, and for that reason, $e^{j \frac{2 \pi k(n+N)}{N}}=e^{j \frac{2 \pi k(n-N)}{N}}=e^{j \frac{j \pi k n}{N}}$. So in the DFT, we get exactly the same result by summing over any complete period of the signal:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}} \\
& =\sum_{n=1}^{N} x[n] e^{-j \frac{2 \pi k n}{N}} \\
& =\sum_{n=-3}^{N-4} x[n] e^{-j \frac{2 \pi k n}{N}} \\
& =\sum_{n=-\frac{(N-1)}{2}}^{\frac{N-1}{2}} x[n] e^{-j \frac{2 \pi k n}{N}}
\end{aligned}
$$

Aperiodic

Let's use this version, because it has a well-defined limit as $N \rightarrow \infty$:

$$
X[k]=\sum_{n=-\frac{(N-1)}{2}}^{\frac{N-1}{2}} x[n] e^{-j \frac{2 \pi k n}{N}}
$$

The limit is:

$$
\begin{aligned}
X(\omega) & =\lim _{N \rightarrow \infty} \sum_{n=-\frac{(N-1)}{2}}^{\frac{N-1}{2}} x[n] e^{-j \omega n} \\
& =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
\end{aligned}
$$

Discrete Time Fourier Transform (DTFT)

So in the limit as $N \rightarrow \infty$,

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega \\
X(\omega) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
\end{aligned}
$$

$X(\omega)$ is called the discrete time Fourier transform (DTFT) of the aperiodic signal $x[n]$.

Outline

(1) Review: Frequency Response

(2) Discrete Time Fourier Transform
(3) Properties of the DTFT

4 Examples
(5) Summary

Properties of the DTFT

In order to better understand the DTFT, let's discuss these properties:
(0) Periodicity
(1) Linearity
(2) Time Shift
(3) Frequency Shift
(9) Filtering is Convolution

Property \#4 is actually the reason why we invented the DTFT in the first place. Before we discuss it, though, let's talk about the others.

0 . Periodicity

The DTFT is periodic with a period of 2π. That's just because $e^{j 2 \pi}=1$:

$$
\begin{aligned}
X(\omega) & =\sum_{n} x[n] e^{-j \omega n} \\
X(\omega+2 \pi) & =\sum_{n} x[n] e^{-j(\omega+2 \pi) n}=\sum_{n} x[n] e^{-j \omega n}=X(\omega) \\
X(\omega-2 \pi) & =\sum_{n} x[n] e^{-j(\omega-2 \pi) n}=\sum_{n} x[n] e^{-j \omega n}=X(\omega)
\end{aligned}
$$

In fact, we've already used this fact. I defined the inverse DTFT in two different ways:

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega=\frac{1}{2 \pi} \int_{0}^{2 \pi} X(\omega) e^{j \omega n} d \omega
$$

Those two integrals are equal because $X(\omega+2 \pi)=X(\omega)$.

1. Linearity

The DTFT is linear:

$$
z[n]=a x[n]+b y[n] \quad \leftrightarrow \quad Z(\omega)=a X(\omega)+b Y(\omega)
$$

Proof:

$$
\begin{aligned}
Z(\omega) & =\sum_{n} z[n] e^{-j \omega n} \\
& =a \sum_{n} x[n] e^{-j \omega n}+b \sum_{n} y[n] e^{-j \omega n} \\
& =a X(\omega)+b Y(\omega)
\end{aligned}
$$

2. Time Shift Property

Shifting in time is the same as multiplying by a complex exponential in frequency:

$$
z[n]=x\left[n-n_{0}\right] \quad \leftrightarrow \quad Z(\omega)=e^{-j \omega n_{0}} X(\omega)
$$

Proof:

$$
\begin{aligned}
Z(\omega) & =\sum_{n=-\infty}^{\infty} x\left[n-n_{0}\right] e^{-j \omega n} \\
& =\sum_{m=-\infty}^{\infty} x[m] e^{-j \omega\left(m+n_{0}\right)} \quad\left(\text { where } m=n-n_{0}\right) \\
& =e^{-j \omega n_{0}} X(\omega)
\end{aligned}
$$

3. Frequency Shift Property

Shifting in frequency is the same as multiplying by a complex exponential in time:

$$
z[n]=x[n] e^{j \omega_{0} n} \quad \leftrightarrow \quad Z(\omega)=X\left(\omega-\omega_{0}\right)
$$

Proof:

$$
\begin{aligned}
Z(\omega) & =\sum_{n=-\infty}^{\infty} x[n] e^{j \omega_{0} n} e^{-j \omega n} \\
& =\sum_{n=-\infty}^{\infty} x[n] e^{-j\left(\omega-\omega_{0}\right) n} \\
& =X\left(\omega-\omega_{0}\right)
\end{aligned}
$$

4. Convolution Property

Convolving in time is the same as multiplying in frequency:

$$
y[n]=h[n] * x[n] \quad \leftrightarrow Y(\omega)=H(\omega) X(\omega)
$$

Proof: Remember that $y[n]=h[n] * x[n]$ means that $y[n]=\sum_{m=-\infty}^{\infty} h[m] x[n-m]$. Therefore,

$$
\begin{aligned}
Y(\omega) & =\sum_{n=-\infty}^{\infty}\left(\sum_{m=-\infty}^{\infty} h[m] x[n-m]\right) e^{-j \omega n} \\
& \left.=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} h[m] x[n-m]\right) e^{-j \omega m} e^{-j \omega(n-m)} \\
& =\left(\sum_{m=-\infty}^{\infty} h[m] e^{-j \omega m}\right)\left(\sum_{(n-m)=-\infty}^{\infty} x[n-m] e^{-j \omega(n-m)}\right) \\
& =H(\omega) X(\omega)
\end{aligned}
$$

Outline

(1) Review: Frequency Response

(2) Discrete Time Fourier Transform
(3) Properties of the DTFT

4 Examples
(5) Summary

Impulse and Delayed Impulse

For our examples today, let's consider different combinations of these three signals:

$$
\begin{aligned}
f[n] & =\delta[n] \\
g[n] & =\delta[n-3] \\
h[n] & =\delta[n-6]
\end{aligned}
$$

Remember from last time what these mean:

$$
\begin{aligned}
& f[n]= \begin{cases}1 & n=0 \\
0 & \text { otherwise }\end{cases} \\
& g[n]= \begin{cases}1 & n=3 \\
0 & \text { otherwise }\end{cases} \\
& h[n]= \begin{cases}1 & n=6 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

DTFT of an Impulse

First, let's find the DTFT of an impulse:

$$
\begin{aligned}
f[n] & = \begin{cases}1 & n=0 \\
0 & \text { otherwise }\end{cases} \\
F(\omega) & =\sum_{n=-\infty}^{\infty} f[n] e^{-j \omega n} \\
& =1 \times e^{-j \omega 0} \\
& =1
\end{aligned}
$$

So we get that $f[n]=\delta[n] \leftrightarrow F(\omega)=1$. That seems like it might be important.

DTFT of a Delayed Impulse

Second, let's find the DTFT of a delayed impulse:

$$
\begin{aligned}
g[n] & = \begin{cases}1 & n=3 \\
0 & \text { otherwise }\end{cases} \\
G(\omega) & =\sum_{n=-\infty}^{\infty} g[n] e^{-j \omega n} \\
& =1 \times e^{-j \omega 3}
\end{aligned}
$$

So we get that

$$
g[n]=\delta[n-3] \leftrightarrow G(\omega)=e^{-j 3 \omega}
$$

Similarly, we could show that

$$
h[n]=\delta[n-6] \leftrightarrow H(\omega)=e^{-j 6 \omega}
$$

Time Shift Property

Notice that

$$
\begin{aligned}
g[n] & =f[n-3] \\
h[n] & =g[n-3] .
\end{aligned}
$$

From the time-shift property of the DTFT, we can get that

$$
\begin{aligned}
& G(\omega)=e^{-j 3 \omega} F(\omega) \\
& H(\omega)=e^{-j 3 \omega} G(\omega) .
\end{aligned}
$$

Plugging in $F(\omega)=1$, we get

$$
\begin{aligned}
& G(\omega)=e^{-j 3 \omega} \\
& H(\omega)=e^{-j 6 \omega} .
\end{aligned}
$$

Convolution Property and the Impulse

Notice that, if $F(\omega)=1$, then anything times $F(\omega)$ gives itself again. In particular,

$$
\begin{aligned}
& G(\omega)=G(\omega) F(\omega) \\
& H(\omega)=H(\omega) F(\omega)
\end{aligned}
$$

Since multiplication in frequency is the same as convolution in time, that must mean that

$$
\begin{aligned}
g[n] & =g[n] * \delta[n] \\
h[n] & =h[n] * \delta[n]
\end{aligned}
$$

Convolution Property and the Impulse

Convolution Property and the Delayed Impulse

Here's another interesting thing. Notice that $G(\omega)=e^{-j 3 \omega}$, but $H(\omega)=e^{-j 6 \omega}$. So

$$
\begin{aligned}
H(\omega) & =e^{-j 3 \omega} e^{-j 3 \omega} \\
& =G(\omega) G(\omega)
\end{aligned}
$$

Does that mean that:

$$
\delta[n-6]=\delta[n-3] * \delta[n-3]
$$

Convolution Property and the Delayed Impulse

Outline

(1) Review: Frequency Response

(2) Discrete Time Fourier Transform
(3) Properties of the DTFT

4 Examples
(5) Summary

Summary

The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$
\begin{aligned}
& X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega
\end{aligned}
$$

Particular useful examples include:

$$
\begin{aligned}
f[n]=\delta[n] & \leftrightarrow F(\omega)=1 \\
g[n]=\delta\left[n-n_{0}\right] & \leftrightarrow G(\omega)=e^{-j \omega n_{0}}
\end{aligned}
$$

Properties of the DTFT

Properties worth knowing include:
(0) Periodicity: $X(\omega+2 \pi)=X(\omega)$
(1) Linearity:

$$
z[n]=a x[n]+b y[n] \leftrightarrow Z(\omega)=a X(\omega)+b Y(\omega)
$$

(2) Time Shift: $x\left[n-n_{0}\right] \leftrightarrow e^{-j \omega n_{0}} X(\omega)$
(3) Frequency Shift: $e^{j \omega_{0} n} x[n] \leftrightarrow X\left(\omega-\omega_{0}\right)$
(9) Filtering is Convolution:

$$
y[n]=h[n] * x[n] \leftrightarrow Y(\omega)=H(\omega) X(\omega)
$$

