1 Damped Sinusoids: CTFS, CTFT, DTFT, and DFT

Do one of the following three problems.

Problem 4.1.1

The vowel /a/ is characterized by formant frequencies at $F_1 = 900$ and $F_2 = 1100$ Hertz, and with bandwidths of roughly $B_1 = B_2 = 150$ Hertz. This problem will focus only on the positive-frequency part of the first formant ringing, and will ignore amplitude and phase, thus

$$x(t) = e^{-\left(\pi 150 - j 2 \pi 900\right)t} u(t)$$

(a) Find $X(\omega)$ and $|X(\omega)|^2$, the CTFT and its associated power spectrum.

(b) Suppose that $y(t)$ is the periodic repetition of $x(t)$, repeated once every 10ms. Find the Fourier series coefficients Y_k, and the associated power spectrum $|Y_k|^2$.

(c) Suppose that $f[n]$ is produced by sampling $x(t)$ once every 0.1ms ($F_s = 10,000$ samples/second). Find $F(\omega)$, the DTFT of $f[n]$, and its associated power spectrum $|F(\omega)|^2$.

(d) Suppose that $g[n]$ is produced by sampling $y(t)$ once every 0.1ms, for a total of exactly ten pitch periods (thus there are a total of $N = 1000$ samples). Let $G[k]$ be the 1000-point DFT of $g[n]$. Find $G[k]$, and its associated power spectrum $|G[k]|^2$.

Problem 4.1.2

The vowel /i/ is characterized by formant frequencies at $F_1 = 300$ and $F_2 = 2000$ Hertz, and with bandwidths of roughly $B_1 = 150$ and $B_2 = 300$ Hertz. This problem will focus only on the positive-frequency part of the first formant ringing, and will ignore amplitude and phase, thus

$$x(t) = e^{-\left(\pi 150 - j 2 \pi 300\right)t} u(t)$$

(a) Find $X(\omega)$ and $|X(\omega)|^2$, the CTFT and its associated power spectrum.

(b) Suppose that $y(t)$ is the periodic repetition of $x(t)$, repeated once every 10ms. Find the Fourier series coefficients Y_k, and the associated power spectrum $|Y_k|^2$.
Homework 4

(c) Suppose that \(f[n] \) is produced by sampling \(x(t) \) once every 0.1ms \((F_s = 10,000 \text{ samples/second})\). Find
\(F(\omega) \), the DTFT of \(f[n] \), and its associated power spectrum \(|F(\omega)|^2 \).

(d) Suppose that \(g[n] \) is produced by sampling \(y(t) \) once every 0.1ms, for a total of exactly ten pitch periods (thus there are a total of \(N = 1000 \) samples). Let \(G[k] \) be the 1000-point DFT of \(g[n] \). Find \(G[k] \), and its associated power spectrum \(|G[k]|^2 \).

Problem 4.1.3

The vowel /e/ is characterized by formant frequencies at \(F_1 = 600 \) and \(F_2 = 1700 \) Hertz, and with bandwidths of roughly \(B_1 = 150 \) and \(B_2 = 250 \) Hertz. This problem will focus only on the positive-frequency part of the first formant ringing, and will ignore amplitude and phase, thus

\[x(t) = e^{-(\pi 150 - j 2\pi 600) t} u(t) \]

(a) Find \(X(\omega) \) and \(|X(\omega)|^2 \), the CTFT and its associated power spectrum.

(b) Suppose that \(y(t) \) is the periodic repetition of \(x(t) \), repeated once every 10ms. Find the Fourier series coefficients \(Y_k \), and the associated power spectrum \(|Y_k|^2 \).

(c) Suppose that \(f[n] \) is produced by sampling \(x(t) \) once every 0.1ms \((F_s = 10,000 \text{ samples/second})\). Find
\(F(\omega) \), the DTFT of \(f[n] \), and its associated power spectrum \(|F(\omega)|^2 \).

(d) Suppose that \(g[n] \) is produced by sampling \(y(t) \) once every 0.1ms, for a total of exactly ten pitch periods (thus there are a total of \(N = 1000 \) samples). Let \(G[k] \) be the 1000-point DFT of \(g[n] \). Find \(G[k] \), and its associated power spectrum \(|G[k]|^2 \).