UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Department of Electrical and Computer Engineering

ECE 498MH Principles of Signal Analysis
Fall 2014

MIDTERM EXAM
Friday, October 3, 2014

• This is a CLOSED BOOK exam.
• There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
• You must SHOW YOUR WORK to get full credit.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Name: __
Problem 1 (25 points)

Each of the following is sampled at $F_s = 10000$ samples/second, producing either $x[n] =$constant, or $x[n] = \cos \omega n$ for some value of ω. Specify the constant if possible; otherwise, specify ω such that $-\pi \leq \omega < \pi$.

(a) $x(t) = \cos (2\pi 900t)$

(b) $x(t) = \cos (2\pi 10000t)$

(c) $x(t) = \cos (2\pi 11000t)$
Problem 2 (25 points)

Consider the signal

\[x(t) = 2 \cos(2\pi 440t) - 3 \sin(2\pi 440t) \]

This signal can also be written as \(x(t) = A \cos(\omega t + \theta) \) for some \(A = \sqrt{M}, \omega, \) and \(\theta = \text{atan}(R). \) Find \(M, \omega, \) and \(R. \)
Problem 3 (25 points)

A signal $x(t)$ is periodic with $T_0 = 0.02$ seconds, and its values are specified by

$$x(t) = \begin{cases}
-1 & 0 \leq t \leq 0.01 \\
0 & 0.01 < t < 0.02
\end{cases}$$

Its CTFS representation is defined by

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\omega_0 t}$$

(a) Sketch $x(t)$ as a function of t for $0 \leq t \leq 0.02$ seconds. Label at least one important tic mark, each, on the horizontal and vertical axes.

(b) What is ω_0?

(c) Find X_0 without doing any integral.
PROBLEM 3 CONTINUED

(d) Find X_k for all the other values of k, i.e., for $k \neq 0$. Simplify; your answer should have no exponentials in it.
Problem 4 (25 points)

Consider the signal

\[x[n] = \begin{cases}
\left(\frac{1}{2} \right)^n & n \geq 0 \\
0 & n < 0
\end{cases} \]

(a) Find the DTFT, \(X(\omega) \).
PROBLEM 4 CONTINUED

(b) Find the power spectrum $|X(\omega)|^2$, and sketch it for $-\pi \leq \omega \leq \pi$. Specify its values at $\omega = 0$, $\omega = \frac{\pi}{2}$, and $\omega = \pi$.