
Lecture	6
Requirements	and	Verifications



Engineering (or Requirements) Flow-down



Engineering (or Requirements) Flow-down

High-level	or	“customer”	
requirements.



Engineering (or Requirements) Flow-down

Feature-level	design



Engineering (or Requirements) Flow-down

Specifications:
*	What	445	refers	to	as	

“requirements”.



High Level Requirements of a Block Diagram

§ Modularity
§ Independent
§ Separate 

Functions
§ Clear Boundaries

§ Information Flow
§ Clear inputs and 

outputs
§ Clear flow of 

information
§ Clearly shows 

what the 
information is

§ Justified Design
§ Functionality is clear 

(high-level and module 
functions)

§ High-level reqs→ 
Feature reqs→ 
specifications

§ Design choices are 
outlined and defensible



High Level Requirements of a Block Diagram

§ Modularity
§ Independent
§ Separate 

Functions
§ Clear Boundaries

“Each	block	should	be	as	modular	as	possible.	In	other	words,	
they	can	be	implemented	independently	and	re-assembled	
later.”

Organized	hierarchically.	The	entire	system	is	composed	of	
sub-systems,	these	subsystems	contain	low	level	blocks.		

We	will	see	an	example	shortly.



High Level Requirements of a Block Diagram

Diagrams	should	include	connectors	that	inform	the	reader	of	
how	information,	power,	etc.	are	transferred	between	blocks	
in	the	diagram.

This	should	include	directionality	of	flow	and	a	clear	graphical	
notation	of	what	the	flow	represents.

§ Information Flow
§ Clear flow of 

information
§ Clear inputs and 

outputs
§ Clearly shows 

what the 
information is



High Level Requirements of a Block Diagram

Each	block	in	your	block	diagram	will	be	accompanied	by	one	
paragraph	of	text.		These	paragraphs	are	boring,	they	should	
take	a	standard	form,	for	example:

Name	of	block.
• Summary	sentence,	purpose	of	block.

• This	block	receives	inputs	from	where?
• This	block	does	what	to	these	inputs?
• This	block	was	chosen	(as	opposed	to	other	

solutions),	because…
• This	block	sends	outputs	to	where?

§ Justified Design
§ Functionality is clear 

(high-level and module 
functions)

§ High-level reqs→ 
Feature reqs→ 
specifications

§ Design choices are 
outlined and defensible





2.2.1	Microcontroller	(Application	Processor)	
The	microcontroller,	a	Freescale	Kinetis KV30P64M100,	handles	memory	allocation	
for	the	cache.	It	communicates	with	the	WiFi chip	via	UART,	and	reads	the	NAND	
flash	cache	through	SPI.	This	microcontroller	was	chosen	for	its	affordability	and	
SPI	clock	speeds	of	12.5MHz,	which	forms	the	basis	for	the	WiFi module	data	
transfer	so	users	can	access	data	as	quickly	as	possible.	The	chip	also	monitors	
battery	charge	status	and	will	disable	the	WiFi module	and	itself	if	the	battery	
voltage	is	low	enough	to	risk	damaging	the	battery.	The	microcontroller	is	
programmed	through	a	JTAG	interface	by	a	Freescale	Freedom	development	board.	













Requirements

Problem

Verifications

Risk	Analysis

Validation

Requirements:
(specifications)

A	set	of	statements	that	describe	the	
attributes	your	system	must	have	to	
solve	your	problem.



Requirements

Problem

Verifications

Risk	Analysis

Validation

Verifications:
A	set	of	statements	that	describe	
tests	you	will	perform	to	make	sure	
that	your	system	meets	the	
requirements.



An	introduction	to	specifications

• Berkun describes	a	story	in	“getting	things	done”.
• Given	an	incredibly	long	template	by	boss.
• Programmers	laughed	at	it,	said	specs	weren’t	needed.
• Would	you	say	the	same	to	a	civil	engineer?
• Not	all	projects	are	the	same.

• People’s	lives	rarely	depend	on	software?
• Most	projects,	however:

1. Are	done	by	a	team
2. Have	budgets	and	deadlines
3. Need	a	way	of	formalizing	knowledge	of	the	project

• Solution	was	to	go	back	to	boss	and	rework	the	specification	template.



The	point…

• Surprise	surprise,	there	are	many	ways	to	do	specifications.



The	value	of	specifications	

• 3	different	perspectives
• Team
• Project
• Stakeholder



From	the	team’s	perspective

• A	good	set	of	specifications	should:
• Solve	problems	for	the	team
• Accelerate	work
• Increase	the	probability	of	producing	a	quality	project
• Should	meet	the	needs	of	the	team	and	the	project

• As	with	everything	we	talk	about,	they	are	arrived	at	through	
iteration.

From	Berkun,	“Making	things	happen”



From	the	project’s	perspective,	specifications:

1. Ensure	the	right	things	are	built
• This	is	what	we	are	discussing	today

2. Provide	a	schedule	and	milestones
• We	will	talk	schedules	in	a	few	weeks

3. Enable	deep	review	and	feedback
• We	will	have	a	formal	design	review	at	the	end	of	the	semester

From	Berkun,	“Making	things	happen”



From	a	stakeholder	perspective

• Used	correctly,	convey	information	in	a	simple	and	easy	to	
understand	way	to	team	members	and	interest	holders.

• “	When	used	poorly,	they	are	hard	(or	painful)	to	read,	tedious	to	
create,	and	frustrating	for	everyone	who	comes	in	to	contact	with	
them.”	- Berkun

• A	lack	of	interest	in	specs	is	often	related	to	a	failed	understanding	of	
what	they	are,	what	they	can	do	for	you,	and	how	to	write	good	ones.
• I	see	this	often…..especially	difficult	in	technical	fields.

From	Berkun,	“Making	things	happen”



What	can	specs	do	for	you?

• Describe	the	functionality	of	what	will	be	built
• Help	designers	clarify	decisions	by	forcing	them	to	be	specific
• I	have	seen	this	many	times,	where	a	well	done	job	enables	criticism…

• Allow	people	to	question/give	feedback
• Communicate	from	one	to	many
• Create	a	team-wide	point	of	reference	and	a	living	description	of	the	
design
• Provide	insurance	for	loss	of	team	members
• Add	sanity	to	the	team	and	a	record	of	what	was	promised.

From	Berkun,	“Making	things	happen”



What	specs	cannot	do	for	you?

• Eliminate	discussions	between	team	members
• Prove	that	the	authors/creators	are	smart
• Prove	how	important	a	feature	is
• Convert	people	to	a	certain	point	of	view
• Show	how	great	someone	is	at	Visio

From	Berkun,	“Making	things	happen”



Specifying	is	not	designing!

• These	are	two	different	processes.
• Designing	involves	creativity	and	choice,	specifying	is	the	act	of	
expressing	the	details	of	an	existing	plan.
• Specifying	should	focus	on	explaining.
• Specifying	something	should	be	written	in	as	clear	a	manner	as	
possible,	the	way	you	arrived	at	a	specification	may	not	be	the	best	
way	to	describe	that	specification.

From	Berkun,	“Making	things	happen”



What	does	a	good	specification	look	like?

• Complicated	does	not	equal	good.	The	goal	of	a	specification	“is	to	
describe	things	in	a	way	that	minimizes	the	amount	of	work	other	
people	have	to	do	to	understand	it.”
• This	is,	of	course,	a	matter	of	judgement…what	is	good	and	what	is	complex	
are	subjective.
• Sometimes,	however,	complexity	is	a	cover-up	for	a	lack	of	understanding.

From	Berkun,	“Making	things	happen”



Tips	for	writing	good	specifications

• Pillage!	Look	at	old	specifications,	reuse	them,	rewrite	them,	credit	
them,	and	move	on.

• Avoid	jargon…this	is	a	theme.

• Is	this	a	reference	or	a	specification?	
• You	don’t	need	to	describe	every	concept	(e.g.	– voltage)

• Sketch	things	out
• Pseudocode	for	coding	specs
• Table	for	hardware	specifications

From	Berkun,	“Making	things	happen”



When	are	specs	complete?

• Good	question…



Define	with	reference	to	398



Requirements	of	requirements	(specifications)

• Quantifiable
• Should	involve	a	number.	Remember	our	discussions	on	reducing	ambiguity?	
Words	like	“very”,	“many”,	“lots”.

• Relevant
• A	specification	for	a	DC	motor	probably	shouldn’t	include	that	it	must	be	
fuzzy	or	purple…unless	it	should.

• Detailed
• A	specification	for	a	part	should	provide	enough	detail	that	anyone	can	read	
it	and	understand	it.



Requirements	of	verifications

• Include	measurement.

• Procedure	for	conducting	measurement.

• Evidence	that	will	be	provided	in	report	that	requirement	has	been	
met.



What	do	you	write	specifications	for?

• The	easy	rule	is	that	every	block	from	your	block	diagram	will	have	a	
SET	of	specifications	associated	with	it.

• Each	specification	will	have	a	verification.







Design:	Intellectual	structure	

Problem
Requirement	1 Requirement	2 Requirement	3

Req. 1.1 Req.	1.2 Req.	1.3 Req.	2.1 Req.	2.2 Req.	3.1 Req.	3.2 Req.	3.3

Logical	Integration



Design:	Example

Social-emotional	agnosia
(inability	to	read	facial	expressions)

Capture	90%	of	facial	
expressions	from	people	

user	is	talking	with.

Classify	5 basic	emotions	
with	95%	accuracy	using	

facial	expressions.

Provide	haptic	feedback to	
user.

Record	video	at	
12	frames	per	
second	or	
faster.

Activate	
camera	when		
faces	detected	
at	distances	of	
0.3m	to	at	least	
2m	with	
greater than
91%	accuracy.

Transmit each	
image	of	each	
facial	
expression	over	
Wi-Fi	with	99%	
accuracy.	

Classify	five	basic	facial	
expressions	and	neutral
with	95%	accuracy.

Classify	facial	
expressions	in	less	than	
one	second.

Provide	
between	0.25-
0.5N	force	to	
user.

Provide	
feedback	in	less	
than 50ms	of	
receiving	label.

Require	less	
than	50mA	of	
current.

Logical	Integration



Design:	Example

Social-emotional	agnosia
(inability	to	read	facial	expressions)

Capture	90%	of	facial	expressions	from	people	user	is	talking	
with.

Record	video	at	12	frames	
per	second	or	faster.

Activate	camera	when		
faces	detected	at	
distances	of	0.3m	to	at	
least	2m	with	greater	than	
91%	accuracy.

Transmit each	image	of	
each	facial	expression	over	
Wi-Fi	with	99%	accuracy.	

Logical	Integration



Design:	Example

Solution
Verification	1 Verification	2 Verification	3

Ver. 1.1 Ver.	1.2 Ver.	1.3 Ver.	2.1 Ver.	2.2 Ver.	3.1 Ver.	3.2 Ver.	3.3

Debugging



Design:	Testing	and	verification
Build	a	facial	expression prosthesis	
Build	database	of	20	conversations	(vary	gender,	length,	distance	from	camera).	

Manually	label	each	facial	expression.	Play	videos	back	to	camera	system.	Compare	
number	of	expressions	recorded by	system	to	ground	truth. Report	accuracy.

Record	video of	stopwatch	with	
camera	for	5	seconds.	Does	5	
second	clip	includes	60	frames?		
Repeat	100	times.	Report	count	
of	frames	for	each	trial.

Create	training	data	set	of	1000	
images. Half	images with	faces,	
half	without.	Vary	gender and
distance	(0.1-3m) from	camera.	
Record	number	of	times	camera	
is	activated	by	face	images.	
Report	accuracy.

Transmit	1000	images	over	the	
Wi-Fi	connection. Save	
transmitted	images.		Compare	
saved	images	to	original	
images.	Report	percent	of	pixels	
that	match.

Debugging



Design:	Correspondence		to	physical	realization

Product
Module	1 Module	2 Module	3

Component	
1.1

Component	
1.1

Component
1.3 Component 2.1 Component 2.2 Component

3.1
Component

3.2
Component

3.3

Physical Integration



Design:	Example

A	wearable	facial	expression
recognition	system

Vision	System

Camera Microprocessor Wi-Fi

Physical Integration



The	445	report	game…

Let’s	pick	a	project	at	random	and	think	about	what	they	did	
well	and	what	they	could	have	done	better	in	terms	of	their:

1. Block	diagram
2. Block	description
3. Requirements
4. Verifications

As	a	reminder,	this	is	NOT	an	exercise	to	personally	judge	
anyone’s	work,	but	is	analogous	to	performing	a	design	
review	of	a	project.



Let’s	(re)invent	something!

• Pick	an	every	day	problem	or	task
• Deconstruct	the	problem
• Write	requirements	for	a	solution
• How	could	you	verify	the	solution?


