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How to Build an Automatic Speaker Recognition 
System 

 
Minh N. Do 

 

1 Overview 
 

Speaker recognition is the process of automatically recognizing who is speaking on 
the basis of individual information included in speech waves. This technique makes it 
possible to use the speaker's voice to verify their identity and control access to services 
such as voice dialing, banking by telephone, telephone shopping, database access 
services, information services, voice mail, security control for confidential information 
areas, and remote access to computers. 

  
This document describes how to build a simple, yet complete and representative 

automatic speaker recognition system.  Such a speaker recognition system has potential 
in many security applications.  For example, users have to speak a PIN (Personal 
Identification Number) in order to gain access to the laboratory door, or users have to 
speak their credit card number over the telephone line to verify their identity.  By 
checking the voice characteristics of the input utterance, using an automatic speaker 
recognition system similar to the one that we will describe, the system is able to add an 
extra level of security. 

 

2 Principles of Speaker Recognition 
 

Speaker recognition can be classified into identification and verification.  Speaker 
identification is the process of determining which registered speaker provides a given 
utterance. Speaker verification, on the other hand, is the process of accepting or rejecting 
the identity claim of a speaker.  Figure 1 shows the basic structures of speaker 
identification and verification systems.  The system that we will describe is classified as 
text-independent speaker identification system since its task is to identify the person who 
speaks regardless of what is saying. 

 
At the highest level, all speaker recognition systems contain two main modules (refer 

to Figure 1): feature extraction and feature matching.  Feature extraction is the process 
that extracts a small amount of data from the voice signal that can later be used to 
represent each speaker.  Feature matching involves the actual procedure to identify the 
unknown speaker by comparing extracted features from his/her voice input with the ones 
from a set of known speakers.  We will discuss each module in detail in later sections. 
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(a) Speaker identification 
 
 

 
 

(b) Speaker verification 
 

Figure 1. Basic structures of speaker recognition systems 
 
 
All speaker recognition systems have to serve two distinguished phases.  The first one 

is referred to the enrolment or training phase, while the second one is referred to as the 
operational or testing phase.  In the training phase, each registered speaker has to provide 
samples of their speech so that the system can build or train a reference model for that 
speaker.  In case of speaker verification systems, in addition, a speaker-specific threshold 
is also computed from the training samples.  In the testing phase, the input speech is 
matched with stored reference model(s) and a recognition decision is made. 

 
Speaker recognition is a difficult task.  Automatic speaker recognition works based 

on the premise that a person’s speech exhibits characteristics that are unique to the 
speaker.  However this task has been challenged by the highly variant of input speech 
signals.  The principle source of variance is the speaker himself/herself.  Speech signals 
in training and testing sessions can be greatly different due to many facts such as people 
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voice change with time, health conditions (e.g. the speaker has a cold), speaking rates, 
and so on.  There are also other factors, beyond speaker variability, that present a 
challenge to speaker recognition technology.  Examples of these are acoustical noise and 
variations in recording environments (e.g. speaker uses different telephone handsets). 

 

3 Speech Feature Extraction 

3.1 Introduction 
 
The purpose of this module is to convert the speech waveform, using digital signal 

processing (DSP) tools, to a set of features (at a considerably lower information rate) for 
further analysis.  This is often referred as the signal-processing front end. 

 
The speech signal is a slowly timed varying signal (it is called quasi-stationary).   An 

example of speech signal is shown in Figure 2.  When examined over a sufficiently short 
period of time (between 5 and 100 msec), its characteristics are fairly stationary.  
However, over long periods of time (on the order of 1/5 seconds or more) the signal 
characteristic change to reflect the different speech sounds being spoken.  Therefore, 
short-time spectral analysis is the most common way to characterize the speech signal. 

 

 
 

Figure 2. Example of speech signal 
 
 

A wide range of possibilities exist for parametrically representing the speech signal 
for the speaker recognition task, such as Linear Prediction Coding (LPC), Mel-Frequency 
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Cepstrum Coefficients (MFCC), and others.  MFCC is perhaps the best known and most 
popular, and will be described in this paper. 
 

MFCC’s are based on the known variation of the human ear’s critical bandwidths 
with frequency, filters spaced linearly at low frequencies and logarithmically at high 
frequencies have been used to capture the phonetically important characteristics of 
speech.  This is expressed in the mel-frequency scale, which is a linear frequency spacing 
below 1000 Hz and a logarithmic spacing above 1000 Hz.  The process of computing 
MFCCs is described in more detail next. 
 
 

3.2 Mel-frequency cepstrum coefficients processor 
 
A block diagram of the structure of an MFCC processor is given in Figure 3.  The 

speech input is typically recorded at a sampling rate above 10000 Hz.  This sampling 
frequency was chosen to minimize the effects of aliasing in the analog-to-digital 
conversion.  These sampled signals can capture all frequencies up to 5 kHz, which cover 
most energy of sounds that are generated by humans.  As been discussed previously, the 
main purpose of the MFCC processor is to mimic the behavior of the human ears.  In 
addition, rather than the speech waveforms themselves, MFFC’s are shown to be less 
susceptible to mentioned variations. 

 

 
 

Figure 3. Block diagram of the MFCC processor 
 

3.2.1 Frame Blocking 
 
In this step the continuous speech signal is blocked into frames of N  samples, with 

adjacent frames being separated by M (M < N).  The first frame consists of the first N 
samples.  The second frame begins M samples after the first frame, and overlaps it by N - 
M samples and so on.  This process continues until all the speech is accounted for within 
one or more frames.  Typical values for N and M are N = 256 (which is equivalent to ~ 30 
msec windowing and facilitate the fast radix-2 FFT) and M = 100. 
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3.2.2 Windowing 
 
The next step in the processing is to window each individual frame so as to minimize 

the signal discontinuities at the beginning and end of each frame.  The concept here is to 
minimize the spectral distortion by using the window to taper the signal to zero at the 
beginning and end of each frame.  If we define the window as 10),( −≤≤ Nnnw , where 
N is the number of samples in each frame, then the result of windowing is the signal 

 
10),()()( −≤≤= Nnnwnxny ll  
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3.2.3 Fast Fourier Transform (FFT) 
 
The next processing step is the Fast Fourier Transform, which converts each frame of 

N samples from the time domain into the frequency domain.  The FFT is a fast algorithm 
to implement the Discrete Fourier Transform (DFT), which is defined on the set of N 
samples {xn}, as follow: 

 

∑
−

=

− −==
1

0

/2 1,...,2,1,0,
N

n

Nknj
nk NkexX π  

 
In general Xk’s are complex numbers and we only consider their absolute values 

(frequency magnitudes).  The resulting sequence {Xk} is interpreted as follow: positive 
frequencies 2/0 sFf <≤  correspond to values 12/0 −≤≤ Nn , while negative 
frequencies 02/ <<− fFs  correspond to 112/ −≤≤+ NnN .  Here, Fs denotes the 
sampling frequency. 

 
The result after this step is often referred to as spectrum or periodogram. 
 

3.2.4 Mel-frequency Wrapping 
 
As mentioned above, psychophysical studies have shown that human perception of 

the frequency contents of sounds for speech signals does not follow a linear scale.  Thus 
for each tone with an actual frequency, f, measured in Hz, a subjective pitch is measured 
on a scale called the ‘mel’ scale.  The mel-frequency scale is a linear frequency spacing 
below 1000 Hz and a logarithmic spacing above 1000 Hz.   
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Figure 4. An example of mel-spaced filterbank 

 
 
One approach to simulating the subjective spectrum is to use a filter bank, spaced 

uniformly on the mel-scale (see Figure 4).  That filter bank has a triangular bandpass 
frequency response, and the spacing as well as the bandwidth is determined by a constant 
mel frequency interval.  The number of mel spectrum coefficients, K, is typically chosen 
as 20.  Note that this filter bank is applied in the frequency domain, thus it simply 
amounts to applying the triangle-shape windows as in the Figure 4 to the spectrum.  A 
useful way of thinking about this mel-wrapping filter bank is to view each filter as a 
histogram bin (where bins have overlap) in the frequency domain. 

 

3.2.5 Cepstrum 
 
In this final step, we convert the log mel spectrum back to time.  The result is called 

the mel frequency cepstrum coefficients (MFCC).  The cepstral representation of the 
speech spectrum provides a good representation of the local spectral properties of the 
signal for the given frame analysis. Because the mel spectrum coefficients (and so their 
logarithm) are real numbers, we can convert them to the time domain using the Discrete 
Cosine Transform (DCT).  Therefore if we denote those mel power spectrum coefficients 
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that are the result of the last step are 1,...,2,0,~0 −= KkS , we can calculate the MFCC's, 
,~nc  as 
 

 
 
Note that we exclude the first component, ,~0c  from the DCT since it represents the 

mean value of the input signal, which carried little speaker specific information. 
 

3.3 Summary 
 
By applying the procedure described above, for each speech frame of around 30msec 

with overlap, a set of mel-frequency cepstrum coefficients is computed.  These are result 
of a cosine transform of the logarithm of the short-term power spectrum expressed on a 
mel-frequency scale.  This set of coefficients is called an acoustic vector.  Therefore each 
input utterance is transformed into a sequence of acoustic vectors.   In the next section we 
will see how those acoustic vectors can be used to represent and recognize the voice 
characteristic of the speaker. 

 
 

4 Feature Matching 

4.1 Overview 
 
The problem of speaker recognition belongs to a much broader topic in scientific and 

engineering so called pattern recognition.  The goal of pattern recognition is to classify 
objects of interest into one of a number of categories or classes.  The objects of interest 
are generically called patterns and in our case are sequences of acoustic vectors that are 
extracted from an input speech using the techniques described in the previous section.  
The classes here refer to individual speakers.  Since the classification procedure in our 
case is applied on extracted features, it can be also referred to as feature matching. 

 
Furthermore, if there exists some set of patterns that the individual classes of which 

are already known, then one has a problem in supervised pattern recognition.  These 
patterns comprise the training set and are used to derive a classification algorithm.  The 
remaining patterns are then used to test the classification algorithm; these patterns are 
collectively referred to as the test set.  If the correct classes of the individual patterns in 
the test set are also known, then one can evaluate the performance of the algorithm. 

 
The state-of-the-art in feature matching techniques used in speaker recognition 

include Dynamic Time Warping (DTW), Hidden Markov Modeling (HMM), and Vector 
Quantization (VQ).  In this project, the VQ approach will be used, due to ease of 
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implementation and high accuracy.  VQ is a process of mapping vectors from a large 
vector space to a finite number of regions in that space.  Each region is called a cluster 
and can be represented by its center called a codeword.  The collection of all codewords 
is called a codebook. 

 
Figure 5 shows a conceptual diagram to illustrate this recognition process.  In the 

figure, only two speakers and two dimensions of the acoustic space are shown.  The 
circles refer to the acoustic vectors from the speaker 1 while the triangles are from the 
speaker 2.  In the training phase, using the clustering algorithm described in Section 4.2,  
a speaker-specific VQ codebook is generated for each known speaker by clustering 
his/her training acoustic vectors.  The result codewords (centroids) are shown in Figure 5 
by black circles and black triangles for speaker 1 and 2, respectively.  The distance from 
a vector to the closest codeword of a codebook is called a VQ-distortion.  In the 
recognition phase, an input utterance of an unknown voice is “vector-quantized” using 
each trained codebook and the total VQ distortion is computed.  The speaker 
corresponding to the VQ codebook with smallest total distortion is identified as the 
speaker of the input utterance.  

 
 

 
 
 

Figure 5. Conceptual diagram illustrating vector quantization codebook formation. 
One speaker can be discriminated from another based of the location of centroids. 

(Adapted from Song et al., 1987) 
 
 

4.2 Clustering the Training Vectors 
 
After the enrolment session, the acoustic vectors extracted from input speech of each 

speaker provide a set of training vectors for that speaker.  As described above, the next 
important step is to build a speaker-specific VQ codebook for each speaker using those 
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training vectors.  The training of a VQ codebook is an instance of the more general 
clustering problem, which typically solved by the K-means clustering algorithm.  A 
specialized algorithm, namely LBG algorithm [Linde, Buzo and Gray, 1980], was 
developed for clustering a set of L training vectors into a set of M codebook vectors.  The 
LBG algorithm is formally implemented by the following recursive procedure: 

 
1. Design a 1-vector codebook; this is the centroid of the entire set of training vectors 

(hence, no iteration is required here). 
2. Double the size of the codebook by splitting each current codebook yn according to 

the rule 
)1( ε+=+

nn yy  
)1( ε−=−

nn yy  
where n varies from 1 to the current size of the codebook, and ε is a splitting 
parameter (we choose ε =0.01). 
 

3. Nearest-Neighbor Search: for each training vector, find the codeword in the current 
codebook that is closest (in terms of similarity measurement), and assign that vector 
to the corresponding cell (associated with the closest codeword). 

 
4. Centroid Update: update the codeword in each cell using the centroid of the training 

vectors assigned to that cell. 
 
5. Iteration 1: repeat steps 3 and 4 until the average distance falls below a preset 

threshold 
 
6. Iteration 2: repeat steps 2, 3 and 4 until a codebook size of M is designed. 
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Figure 6. Flow diagram of the LBG algorithm (Adapted from Rabiner and Juang, 1993) 
 
 
Intuitively, the LBG algorithm designs an M-vector codebook in stages.  It starts first 

by designing a 1-vector codebook, then uses a splitting technique on the codewords to 
initialize the search for a 2-vector codebook, and continues the splitting process until the 
desired M-vector codebook is obtained. 

 
Figure 6 shows, in a flow diagram, the detailed steps of the LBG algorithm.  “Cluster 

vectors” is the nearest-neighbor search procedure which assigns each training vector to a 
cluster associated with the closest codeword.  “Find centroids” is the centroid update 
procedure.  “Compute D (distortion)” sums the distances of all training vectors in the 
nearest-neighbor search so as to determine whether the procedure has converged. 

 

4.3 Recognizing the Testing Vectors 
 
Once a VQ codebook is trained for each speaker, given the sequence of acoustic 

vectors from an unknown speaker (test vectors), these vectors can be vector-quantized 



11 

against each VQ codebook and a total VQ distortion is computed.  Specifically, let 
𝒕 = (𝒕!, 𝒕!,… , 𝒕!) be the sequence of testing acoustic vectors, and 
𝒄(!) = (𝒄!

(!),  𝒄!
(!),… , 𝒄!

! ) be the VQ codebook vectors of the i-th speaker.  Then the 
distance between the sequence of test vectors 𝒕 and i-th speaker VQ codebook 𝒄(!) is 
computed as 

𝑑 𝒕, 𝒄 ! =    argmin!!!,!,…,!   𝒕! − 𝒄!
(!)

!

!!!

 

 
Where .  is simply the Euclidean distance in the acoustic vector space.  The identity 

of the unknown speaker is identified as 
𝑖∗ = argmin𝑖=1,2,…,𝐾  𝑑 𝒕, 𝒄 𝑖  
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