Spring 2013

University of Illinois at Urbana-Champaign

ELECTRICAL AND COMPUTER ENGINEERING 340

Semiconductor Electronics
http://courses.engr.illinois.edu/ece340/

The course director is Prof. Jean-Pierre Leburton

The course structure consists of three lecture/discussion meetings per week. Final course grades are based on the distribution of total points accumulated on the final exam, two hour-long exams, three in-class quizzes, and assigned homeworks, as described in the section on grading criteria.

The Course information listed below is included on the pages, which follow:

General information ..1
Purpose of the Course ..2
Instructors and TA Office Hours ...3
Required and Reference Textbooks ..4
Course Expectations ...5
Homework Guidelines and Format ...5-6
Exams ...7
Grading Criteria ..7
Course Policy on Absences ...8
Course Schedule and Outline ..9-11

Prerequisite: Physics 214 and credit or concurrent registration in ECE 329.
Graduate credit not allowed toward degrees in electrical and computer engineering.

3 HOURS.
Purpose of the Course

The purpose of this course is to provide the student with the essential background on semiconductor materials and a basic understanding of the following semiconductor electronic devices that will be required for a successful career in electrical engineering:

- p-n Junctions
- Light-emitting diodes/Photodetectors
- Bipolar Junction Transistors
- Field Effect Transistors

These topics are important to the professional electrical or computer engineer because these devices are utilized in almost every area of electrical or computer engineering. To be productive and remain employed throughout a 30+ year career in electrical or computer engineering, the electrical and computer engineer needs to understand the fundamentals of semiconductors and the operation and limitations of these devices. A successful engineer will be able to apply this knowledge in the different areas of electrical engineering, whether he or she works directly in circuits and system design, control systems, communications, computers, electromagnetic fields, bioengineering, power systems, directly in the semiconductor industry, or in areas yet to develop that will certainly rely heavily on semiconductor devices and/or integrated circuits.

The material in this course will provide the background that will give the student the ability to learn and understand the performance and limits of improved devices that will be required throughout your electrical or computer engineering career.
ECE 340 Instructors, TAs and Office Hours

Course Director: Professor Jean-Pierre Leburton
3251 Beckman Institute
333-6813
jleburto@illinois.edu

Spring 2013 ECE 340 Instructors:

<table>
<thead>
<tr>
<th>Section</th>
<th>Time</th>
<th>Location</th>
<th>Office Hours Location</th>
<th>Tel. #</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. D. Wasserman</td>
<td>A</td>
<td>10:00</td>
<td>106B8 Eng. Hall</td>
<td>1114 MNTL</td>
<td>333-9698</td>
</tr>
<tr>
<td>Prof. J.P. Leburton</td>
<td>C</td>
<td>11:00</td>
<td>165 Ev.Lab</td>
<td>3251 BI</td>
<td>333-6813</td>
</tr>
<tr>
<td>Dr. M. Roppo</td>
<td>E</td>
<td>1:00</td>
<td>218 MEB</td>
<td>330L Ev. Lab</td>
<td>300-5444</td>
</tr>
<tr>
<td>Prof. E. Pop</td>
<td>X</td>
<td>12:00</td>
<td>165 Ev.Lab</td>
<td>2258 MNTL</td>
<td>244-2070</td>
</tr>
<tr>
<td>TA Fawad Hassan</td>
<td></td>
<td></td>
<td>BI 3rd floor bridge</td>
<td></td>
<td>fismail2@</td>
</tr>
<tr>
<td>TA Michael Jo</td>
<td></td>
<td></td>
<td>BI 3rd floor bridge</td>
<td></td>
<td>mkjo2@</td>
</tr>
<tr>
<td>TA Fei Tan</td>
<td></td>
<td></td>
<td>MNTL 1225</td>
<td></td>
<td>feitan1@</td>
</tr>
</tbody>
</table>

Room 156 Everitt Laboratory is the office for registration, section changes, lost & found.

ECE 340 - INSTRUCTORS AND TA OFFICE HOUR SCHEDULE

<table>
<thead>
<tr>
<th>TIME</th>
<th>SUNDAY</th>
<th>MONDAY</th>
<th>TUESDAY</th>
<th>WEDNESDAY</th>
<th>THURSDAY</th>
<th>FRIDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 – 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 - 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 - 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Tan</td>
<td></td>
</tr>
<tr>
<td>11 - 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Hassan</td>
<td></td>
</tr>
<tr>
<td>12 - 1</td>
<td></td>
<td></td>
<td></td>
<td>F. Hassan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 – 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Hassan</td>
<td></td>
</tr>
<tr>
<td>2 – 3</td>
<td></td>
<td>D. Wasserman</td>
<td>J.P. Leburton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 – 4</td>
<td></td>
<td>M. Roppo</td>
<td></td>
<td></td>
<td></td>
<td>M. Jo</td>
</tr>
<tr>
<td>4 – 5</td>
<td>E. Pop</td>
<td></td>
<td></td>
<td></td>
<td>M. Jo</td>
<td></td>
</tr>
<tr>
<td>5 – 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M. Jo</td>
<td></td>
</tr>
<tr>
<td>6 – 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Office hours will be held as listed, in the offices given in the table. You can make individual appointments to see (any of the) instructors at times other than the scheduled office hours.
Required Textbook:
Solid State Electronic Devices
Ben G. Streetman and Sanjay Banerjee, Sixth Edition

Reference Textbooks are Available in Grainger Engineering Library:

Semiconductor Device Fundamentals
Pierret, Robert F.
Addison-Wesley, 1996
Call No: 621.3817M91D1986
Author: Muller, R.S./Kamins, T.I.
Title: Device Electronics for Integrated Circuits, 2nd ed.
Call No: 621.381sa19f
Author: Sah, Chih-Tang
Title: Fundamentals of Solid-State Electronics
Call No: 621.38152si64s
Authors: Singh, Jasprit
Title: Semiconductor Devices, An Introduction
Call No: 621.38152P615s1989
Authors: Pierret, Robert F./Neudeck, G.W.
Title: Modular Series on Solid State Devices, Volumes 1-4
Call No: 537.622N26S
Authors: Neamen, Donald A.
Title: Semiconductor Physics and Devices
Chenming C. Hu
Free online textbook, see: http://ecee.colorado.edu/~bart/book/contents.htm
By Prof. Bart Van Zeghbroeck at the University of Colorado
Requirements of the Course

Class etiquette: Students must study the assigned material before class, attend class regularly, be attentive, ask questions, and complete the required work satisfactorily.

Homework: The homework will consist of several types of problems: There will be a few simple “plug-in” problems to illustrate and reinforce the concepts covered in the assigned reading and lectures, and derivations of equations given in the textbook or in class. Another type of problem that is important in developing the understanding of semiconductor devices and their applications is the application or extension of the concepts that have been studied to new situations. Occasionally, a problem will be assigned on topics that are not studied in class. This type of problem is probably the most important because it teaches the student how to learn new material on his own, an ability that will be essential for a successful career in electrical or computer engineering. Another type of problem that will be assigned on certain topics is the design problem, where judgment must be used and there may be a number of acceptable answers. The final type of problem is the computer-based problem, in which the variation of a particular quantity can be plotted as a function of some variable for different parameters. Examples are the variation of the free electron concentration in a semiconductor sample as a function of temperature for different values of the doping concentrations, N_d and N_a, and the characteristics of a field effect transistor where the drain current is plotted as a function of the drain voltage for different values of the gate voltage. These types of problems are tedious to analyze using a simple calculator, but are trivial using a computer and plotting routines.

If the student has not already acquired the ability to write simple computer programs and produce computer generated graphs using Mathematica, Excel, Matlab, Matcad, or some other program, this ability should be acquired in the first four weeks of the course.

The homework will be assigned on Friday and must be turned in at the beginning of the next Friday class, unless otherwise specified. Late homework will not be accepted.

Homework guidelines:
Homework must be done on 8-1/2 x 11 paper, preferably on engineer calculation sheets or engineering calculation pads. The pages for each homework assignment must be stapled together. The pages must be numbered, and the following information must be on the first page: (1) your name, (2) Net ID #, (3) assignment number, date, (4) class section, and (5) instructor's name.

The homework must be neat and easily readable, in pen, dark pencil, or computer output, and all work leading to your answer must be shown.

Homework format: The solution to each homework or exam problem must include all of the following that are appropriate for the particular problem:

- A diagram and/or the equations required for the problem.
- Solution of the equations for the appropriate quantities, using only variable symbols.
- In the final expression, numbers and units must be substituted. Note: units for each physical quantity in the equation must be explicitly included.
The units of the quantity in the final answer must be converted to those desired by using unity multiplication factors. *The units commonly used in semiconductor device work are those in the SI system of units, with the exception that it is common to use cm (10^-2 m) or sometimes μm (10^-6 m), instead of meters for length measurements, and cm^2 rather than m^2 for volume measurements.*

Finally, and only after all of the above have been done, use a calculator to complete the necessary numerical calculations, and then **draw a box around your answer.**

Significant Figures: In the calculation of quantities from theoretical models or from experimental measurements, it is important to be aware of the number of significant figures that are meaningful in your final result:

1. If an expression involves the product or quotient of several quantities, the number of significant figures retained in the answer should only be as many as the number of significant figures in the least precise quantity used in the calculation,

2. If a calculation involves sums and differences, the number of significant figures retained should be determined by the smallest number of decimal places in any term in the expression: e.g., 12.5 + 1.3295 = 13.8.

3. **For calculations in this course, assume that the quantities given are sufficiently accurate to justify retaining three significant figures in your final result.** Display your results in the form of a graph whenever appropriate.

You will not receive full credit for a homework or exam problem unless all of these requirements are complied with. If we cannot read your work on the homework or exams, you will receive zero credit!

You are encouraged to work together and discuss the homework assignments. Please see the professors and/or the TAs during their office hours for assistance on material or homework problems that you do not understand. If you are having difficulty with a particular topic, try reading about the same topics in the books that are available for ECE 340 in the Grainger Engineering Library (See the list on page 4). **However, the homework assignments that you turn in must be your own work and not copied from someone else's solutions.** (Copying someone else's solution and submitting it as your own is cheating!)

Note!

Homework or exam problems that are illegible or difficult to read and follow, or do not include the appropriate units explicitly, will not receive full credit.

Be neat!
Exams

Quizzes: There will be three short in-class quizzes that may not be announced in advance. Each quiz may consist of one or two questions and will take about 10 minutes. Note that most quiz problems will be mostly conceptual and similar to homework problems or examples in each chapter used in the textbook. The purpose of studying homework problems diligently is to help you keep up the pace and quizzes are designed to gauge your progress. You should use the quizzes as a diagnostic measure to identify and strengthen your possible weak points on the material. Quizzes should be taken in your own section otherwise it will incur penalty.

Midterms & Final: In addition to quizzes, there will be two midterm exams and a comprehensive final exam. Both midterm and final exam will consist of several problems or questions. The exams will be closed book. An equation sheet and the physical parameters and constants that are required in the solutions will be provided the day of the exam. The midterms are combined exams given in the evening at the times shown in the syllabus. They will be planned to take one hour. The format of your exam solutions should be the same as that used for the homework assignments: units must be shown explicitly, your answer must be circled and your work must be readable. Numerical answers should contain three significant figures unless more are justified by the given data. The final exam is a three hour combined exam, which will be given at a time to be scheduled.

Exam I: Tuesday, February 26, 2013, 7-8:00 p.m.,
Exam II: Tuesday, April 9, 2013, 7-8:00 p.m.,
Final Exam: May 03-10, 2013, to be announced

Grading Criteria: Your grade in ECE 340 is based primarily on your scores on the homework assignments, quizzes, two hour-exams, final exam, and your class participation as follows:

Final Score = Homework + Quizzes + Midterm scores + Final exam score as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>10%</td>
</tr>
<tr>
<td>Quiz</td>
<td>15%</td>
</tr>
<tr>
<td>Hour Exam I</td>
<td>20%</td>
</tr>
<tr>
<td>Hour Exam II</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>35%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Letter grades will be assigned to different ranges of the Final Scores at a meeting of the course staff at the end of the semester. Plus and minus grades may be given to the highest and lowest 1/3 in each letter grade range.

Study the material ahead of time, attend class, pay attention and ask questions! Your performance and contributions in class will help you learn the material. Because of this grading procedure, it is **not possible to accurately determine your letter grade from your scores before the course is completed.** As a guide, the grade distributions of the previous 3 semesters are given below:

<table>
<thead>
<tr>
<th>Semester</th>
<th>A’s</th>
<th>B’s</th>
<th>C’s</th>
<th>D’s</th>
<th>F’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2011</td>
<td>25%</td>
<td>31%</td>
<td>22%</td>
<td>14%</td>
<td>8%</td>
</tr>
</tbody>
</table>
Spring 2012: 22% A’s 34% B’s 28% C’s 12% D’s 4% F’s
Fall 2012: 22% A’s 34% B’s 28% C’s 12% D’s 4% F’s

From this grade distribution, you can make a rough estimate how you are doing throughout the semester by obtaining your percentile ranking from the TAs. Any questions regarding course grading should be addressed to Professor J.P. Leburton.

The topics covered in this course build on each other, so what you learn early in the course will be needed to understand later topics. Therefore, keep up with the schedule, study the daily assignments, do the homework, and don’t get behind. The material for this course is covered in a number of textbooks listed on page 4 that are available in the Engineering Library. If a subject is not presented clearly in the textbook or by the instructor, try another book, be resourceful!

Course Policy on Absences

If you miss an exam or homework assignment, the following procedures apply:

To receive an excused absence, you must either arrange your absence in advance with your instructor (i.e., prior to the absence), or complete an Excused Absence Form at the Undergraduate College Office, Room 207 Engineering Hall, indicating what work you have missed and the reason for the absence. This form must be signed by a physician or medical official for a medical excuse, or by the Office of the Dean of Students (Emergency Dean) for a personal excuse due to personal illness, family emergencies, or other uncontrollable circumstances. The office may be reached at 333-0050.

For missed classes or hour exams, present the completed form in person to your section instructor as soon as possible after you return.

Scores on quizzes, homework, and hour exams missed due to excused absences will not be made up. Your grade will be determined based on the average of the homework grades or exam grades that you have completed. Specifically, if you miss a homework assignment or hour exam, because of an excused absence, the average homework scores or exam scores will be used to determine the total, homework or hour exam score and the final total score.

Work missed due to an unexcused absence will be counted as a 0.

You **must** take the final exam to receive a grade for the course. If you miss the final exam for any reason (excused or not), you will automatically receive a final course grade of INCOMPLETE. To complete the course, you must make arrangements through your Dean's office and with the instructor to take a makeup final exam that will be given at the scheduled time at the end of the following semester.
<table>
<thead>
<tr>
<th>Class Meeting</th>
<th>Date</th>
<th>Topic</th>
<th>Assigned §'s - Study from B.G. Streetman’s book</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M 01/14</td>
<td>Introduction to the course and general introduction to semiconductor electronics</td>
<td>Read Info Packet</td>
</tr>
<tr>
<td>2</td>
<td>W 01/16</td>
<td>General introduction to semiconductor electronics (cont’d)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F 01/18</td>
<td>Semiconductors, crystal structure</td>
<td>§'s 1.1, 1.2, Read §'s 1.3.1, 1.4</td>
</tr>
<tr>
<td></td>
<td>M 01/21</td>
<td>Martin Luther King Jr. Birthday : No class</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>W 01/23</td>
<td>Bonding forces and energy bands in solids</td>
<td>(Review topics in Chap. 2 from Phys. 214 as required) §'s 3.1, 3.1.1, 3.1.2,</td>
</tr>
<tr>
<td>5</td>
<td>F 01/25</td>
<td>Energy bands (cont’d) and charge carriers in semiconductors</td>
<td>§'s 3.1.3, 3.2.1</td>
</tr>
<tr>
<td>6</td>
<td>M 01/28</td>
<td>Intrinsic material, extrinsic material</td>
<td>§'s 3.2.3, 3.2.4</td>
</tr>
<tr>
<td>7</td>
<td>W 01/30</td>
<td>Distribution functions, Fermi-Dirac statistics, Maxwell-Boltzmann statistics, and carrier concentrations</td>
<td>§'s 3.3.1, 3.3.2</td>
</tr>
<tr>
<td>8</td>
<td>F 02/01</td>
<td>Distribution functions, Fermi-Dirac statistics, Maxwell-Boltzmann statistics, and carrier concentrations (cont’d)</td>
<td>§'s 3.3.1, 3.3.2</td>
</tr>
<tr>
<td>9</td>
<td>M 02/04</td>
<td>Carrier concentrations (Cont’d) and the Temperature dependence</td>
<td>§'s 3.3.3, 3.3.4</td>
</tr>
<tr>
<td>10</td>
<td>W 02/06</td>
<td>Drift of carriers in electric fields</td>
<td>§'s 3.4.1</td>
</tr>
<tr>
<td>11</td>
<td>F 02/08</td>
<td>Resistance, Temperature, impurity concentration, Drift and Resistance, Effects of Temperature and Doping on Mobility</td>
<td>§'s 3.4.2, 3.4.3,</td>
</tr>
<tr>
<td>12</td>
<td>M 02/11</td>
<td>Invariance of the Fermi level at equilibrium</td>
<td>§'s 3.5</td>
</tr>
<tr>
<td>13</td>
<td>W 02/13</td>
<td>Optical absorption and luminescence / Carrier Generation and Recombination</td>
<td>§'s 4.1, 4.3.1</td>
</tr>
<tr>
<td>14</td>
<td>F 02/15</td>
<td>Carrier Generation and Recombination (Cont’d)</td>
<td>§'s 4.3.1, 4.3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
</tbody>
</table>
| 15 | M 02/18 | **Carrier Generation and Recombination (Cont'd) and photo-conductivity**
4.3.3 Steady State Carrier Generation; Quasi-Fermi Levels
4.3.4 Photoconductive Devices |
| §'s 4.3.3, 4.3.4 |
| 16 | W 02/20 | **Diffusion of carriers**
4.4.1 Diffusion Processes
4.4.2 Diffusion and Drift of Carriers |
| §'s 4.4, 4.4.1, 4.4.2 |
| 17 | F 02/22 | **Diffusion of carriers (cont’d)**
4.4.2 Diffusion and Drift of Carriers; Built-in Fields
4.4.3 Diffusion and Recombination; |
| §'s 4.4.2, 4.4.3 |
| 18 | M 02/25 | Review, discussion and problem solving |
| Tu 02/26 | **HOUR EXAM** (Chaps. 1, 3, & 4, up to 4.4.2 included)
7:00 - 8:00 P.M., combined sections |
| 19 | W 02/27 | **Steady state carrier injection; diffusion length**
4.4.4 Steady State Carrier Injection; Diffusion Length |
| § 4.4.4 |
| 20 | F 03/01 | **p-n junctions in equilibrium, contact potential**
5.1 Fabrication of p-n Junctions,(short intro)
5.2 Equilibrium Condition
5.2.1 The Contact Potential |
| Read § 5.1
Study §’s 5.2, 5.2.1, 5.2.2 |
| 21 | M 03/04 | **p-n junctions in equilibrium, space charge**
5.2.2 Equilibrium Fermi Levels
5.2.3 Space Charge at a Junction |
| Study §’s 5.2, 5.2.1, 5.2.2, 5.2.3 |
| 22 | W 03/06 | **Space charge at a junction**
5.2.3 Space Charge at a Junction |
| § 5.2.3 |
| F 03/08 | No Class (EOH) |
| 23 | M 03/11 | **Current flow in a P-N junction**
5.3. Forward- and Reverse-Biased Junctions;
Steady State Conditions
5.3.1 Qualitative Description of Current Flow at a Junction |
| § 5.2.3, 5.3, 5.3.1 |
| 24 | W 03/13 | **Carrier injection, the diode equation**
5.3.2 Carrier Injection |
| § 5.3.2 |
| 25 | F 03/15 | **Minority and majority carrier currents**
5.3.2 Carrier Injection
5.3.3 Reverse Bias |
| §’s 5.3.2, 5.3.3 |
| MWF 03/18-22 | No Class (Spring Break) |
| 26 | M 03/25 | **Reverse-bias breakdown**
5.4 Reverse-Bias Breakdown
5.4.1 Zener Breakdown
5.4.2 Avalanche Breakdown |
<p>| §’s 5.4, 5.4.1, 5.4.2 |
| 27 | W 03/27 | Stored charges, diffusion capacitance and junction capacitance |
| §’s 5.4.4 |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Topic</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 28 | F 03/29 | **Optoelectronic Devices (Photodiodes)**
8.1.1 Current and Voltage in an Illuminated Junction
8.1.2 Solar Cells
8.1.3 Photodetectors | §'s 8.1.1, 8.1.2, 8.1.3 |
| 29 | M 04/01 | **Optoelectronic devices (cont’d)**
8.2 Light-Emitting Diodes
8.4 Semiconductor Lasers | §'s 8.2.1, 8.2.2, 8.2.3, 8.4.1, 8.4.2, 8.4.3, 8.4.4, 8.4.5 |
| 30 | W 04/03 | **Metal semiconductor junctions**
5.7.1 Schottky Barrier
5.7.2 Rectifying Contacts
5.7.3 Ohmic Contacts | §'s 5.7.1, 5.7.2, 5.7.3 |
| 31 | F 04/05 | **Metal-insulator-semiconductor FET**
6.4.1 Basic Operation
Metal-insulator-semiconductor FET (Cont’d)
6.4.2 The Ideal MOS Capacitor | §’s 6.4.1, 6.4.2 |
| 32 | M 04/08 | **Review, discussion and problem solving** | |
| | Tu 04/09 | **HOUR EXAM** (Chaps. 4, 5 & 8) 7:00 - 8:00 PM
combined sections | |
| 33 | W 04/10 | **MOS Capacitor**
6.4.3 Flatband voltage
6.4.4 Threshold Voltage | §’s 6.4.3, 6.4.4 |
| 34 | F 04/12 | **MOS Capacitor (Cont’d)**
6.4.5 MOS Capacitance-Voltage Analysis | §’s 6.4.5 |
| 35 | M 04/15 | **MOS field-effect transistor**
6.5.1 Output Characteristics
6.5.2 Transfer Characteristics | §’s 6.5.1, 6.5.2 |
| 36 | W 04/17 | **MOSFET (Cont’d):**
Small-signal analysis
Resistive load-NMOSFET-common-source amplifier
CMOS inverter (Integrated Circuits) | §’s 6.5.8, 9.3.1, 9.5.1 |
| 37 | F 04/19 | **Narrow-base Diode**
Handout on narrow-base diode | §’s handout on BJT |
| 38 | M 04/22 | **Introduction to bipolar junction transistor**
BJT Fundamentals
Relationship between narrow-based diode and BJT | §’s 6.1.1, 6.1.2, 7.1, 7.2, 7.3 and handout |
| 39 | W 04/24 | **Introduction to bipolar junction transistor**
BJT specifics | §’s 7.3, 7.4.1, 7.4.2, 7.4.3, 7.4.4 and handout |
| 40 | F 04/26 | **Introduction to bipolar junction transistor (cont’d)**
Normal mode operation | §’s 7.3, 7.4.1, 7.4.2, 7.4.3, 7.4.4 and handout |
| 41 | M 04/29 | **Bipolar junction transistor (Cont'd),**
Common-emitter amplifier and small-signal current gain | §’s 7.4.1, 7.4.2, 7.4.3, 7.4.4 and handout |
| 42 | W 05/01 | **Review, discussion and problem solving** | |
| | | **FINAL EXAM**, (Chaps. 1, 3, 4, 5, 6, 7 & 8)
To be announced | |