ECE 333 – Green Electric Energy

10. Energy Economics Concepts

George Gross

Department of Electrical and Computer Engineering

University of Illinois at Urbana–Champaign
The economic evaluation of a renewable energy resource requires a meaningful quantification of the cost elements:
- fixed costs
- variable costs

We use engineering economics notions for this purpose since they provide the means to compare on a consistent basis:
- two different projects; or,
- the costs with and without a given project
Basic underlying notion: a dollar today is not the same as a dollar in a year.

We represent the time value of money by the standard approach of discounted cash flows.

The notation is:

\[P = \text{principal} \]
\[i = \text{interest value} \]

We use the convention that every payment occurs at the end of a period.
SIMPLE EXAMPLE

loan P for 1 year
repay $P + iP = P(1 + i)$ at the end of 1 year

year 0 P
year 1 $P(1 + i)$

loan P for n years

year 0 P
year 1 $(1 + i)P$ repay/reborrow
year 2 $(1 + i)^2 P$ repay/reborrow
year 3 $(1 + i)^3 P$ repay/reborrow

\vdots
year n $(1 + i)^n P$ repay
COMPOUND INTEREST

<table>
<thead>
<tr>
<th>end of period</th>
<th>amount owed</th>
<th>interest for next period</th>
<th>amount owed at the beginning of the next period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P</td>
<td>$P \cdot i$</td>
<td>$P + P \cdot i = P (1 + i)$</td>
</tr>
<tr>
<td>1</td>
<td>$P(1 + i)$</td>
<td>$P(1 + i) \cdot i$</td>
<td>$P(1 + i) + P(1 + i) \cdot i = P(1 + i)^2$</td>
</tr>
<tr>
<td>2</td>
<td>$P(1 + i)^2$</td>
<td>$P(1 + i)^2 \cdot i$</td>
<td>$P(1 + i)^2 + P(1 + i)^2 \cdot i = P(1 + i)^3$</td>
</tr>
<tr>
<td>3</td>
<td>$P(1 + i)^3$</td>
<td>$P(1 + i)^3 \cdot i$</td>
<td>$P(1 + i)^3 + P(1 + i)^3 \cdot i = P(1 + i)^4$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$n-1$</td>
<td>$P(1 + i)^{n-1}$</td>
<td>$P(1 + i)^{n-1} \cdot i$</td>
<td>$P(1 + i)^{n-1} + P(1 + i)^{n-1} \cdot i = P(1 + i)^n$</td>
</tr>
<tr>
<td>n</td>
<td>$P(1 + i)^n$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The value in the last column at the e.o.p. $(k-1)$ provides the amount in the first column for the period k.
TERMINOLOGY

\[F = P (1 + i)^n \]

- \(F \) = lump sum repayment at the end of \(n \) periods
- \(P \) = principal amount
- \(i \) = interest rate
- \(n \) = number of periods

- Compound interest in the repayment
- Need not be integer-valued
TERMINOLOGY

- We call \((1 + i)^n\) the **single payment compound amount factor**.

- We define
 \[\beta \triangleq (1 + i)^{-1} \]

- Then,
 \[\beta^n = (1 + i)^{-n} \]

 is the **single payment present worth factor**

- \(F\) denotes the **future worth**; \(P\) denotes the **present worth or present value** at interest \(i\) of a future sum \(F\).
EXAMPLE 1

Consider a loan of $4,000 at 8% interest to be repaid in two installments:

- $1,000 and interest at the e.o.y. 1
- $3,000 and interest at the e.o.y. 4

$4,000

$1,000 + interest

$3,000 + interest
EXAMPLE 1

- The cash flows are

 - e.o.y. 1: \[1,000 + 4,000 \times (0.08) = \$1,320.00 \]

 - e.o.y. 4: \[3,000 \times (1 + 0.08)^3 = \$3,779.14 \]

- Note that the loan is made in year 0 present $, but the repayments are in year 1 and year 4 future $
EXAMPLE 2

Given

\[P = 1,000 \quad \text{and} \quad i = .12 \]

then

\[P \left(1 + i\right)^5 = 1,000 \left(1 + .12\right)^5 = 1,762.34 = F \]

We say that with the cost of money of 12 %, \(P \) and \(F \) are equivalent in the sense that $1,000 today has the same worth as $1,762.34 in 5 years.
EXAMPLE 3

Consider an investment that returns

$1,000 at the e.o.y. 1

$2,000 at the e.o.y. 2

$i = 10\%$

We evaluate P

\[
P = \frac{1,000}{1 + .1} + \frac{2,000}{(1 + .1)^2}
\]

\[
= 909.9 + 1,652.09
\]

\[
= 2,561.98
\]
EXAMPLE 3

We review this example with a cash–flow diagram

\[$2,561.98 \]

\[$1,000 \]

\[$2,000 \]

0 1 2

year
EXAMPLE 3

Next, suppose that this investment requires $2,400 now and so at 10% we say that the investment has a net present value given by

\[NPV = 2,561.98 - 2,400 = 161.98 \]
CASH FLOWS

- A cash–flow is basically a transfer of an amount A_t from one entity to another at the e.o.p. t

- We consider the cash–flow set $\{A_0, A_1, A_2, \ldots, A_n\}$

- This set corresponds to the set of the transfers at the end of the periods in $\{0, 1, 2, \ldots, n\}$
CASH FLOWS

- We associate the transfer A_t at the e.o.p. t,

 $t = 0, 1, 2, \ldots, n$

- The convention for cash flows is

 + inflow

 - outflow

- Each cash flow requires the specification of:

 - amount;

 - time; and,

 - its sign
Given a cash–flow set \(\{A_0, A_1, A_2, \ldots, A_n\} \) we define the future worth \(F_n \) of the cash flow set at the e.o.y. \(n \) as

\[
F_n = \sum_{t=0}^{n} A_t (1 + i)^{n-t}
\]
Note that each cash flow A_t in the $(n + 1)$ period set contributes differently to F_n:

\[
\begin{align*}
A_0 & \rightarrow A_0 (1 + i)^n \\
A_1 & \rightarrow A_1 (1 + i)^{n-1} \\
A_2 & \rightarrow A_2 (1 + i)^{n-2} \\
& \vdots \\
A_t & \rightarrow A_t (1 + i)^{n-t} \\
& \vdots \\
A_n & \rightarrow A_n
\end{align*}
\]
We define the present worth P of the cash-flow set as

$$P = \sum_{t=0}^{n} A_t \beta^t = \sum_{t=0}^{n} A_t (1+i)^{-t}$$

Note that

$$P = \sum_{t=0}^{n} A_t (1+i)^{-t}$$

$$= \sum_{t=0}^{n} A_t (1+i)^{-t} \left(1+i\right)^n \left(1+i\right)^{-n}$$
CASH FLOWS

\[
\beta^n F_n = \left(1 + i\right)^n P
\]
Consider the cash-flow set \(\{ A_1, A_2, \ldots, A_n \} \) with

\[
A_t = A \quad t = 1, 2, \ldots, n
\]

Such a set is called an equal payment cash flow set.

We compute the present worth at \(t = 0 \)

\[
P = \sum_{t=1}^{n} A_t \beta^t = A \sum_{t=1}^{n} \beta^t = A \beta \left[1 + \beta + \beta^2 + \ldots + \beta^{n-1} \right]
\]
Now, for $0 < \beta < 1$, we have the identity

$$\sum_{j=0}^{\infty} \beta^j = \frac{1}{1 - \beta}$$

It follows that

$$1 + \beta + \ldots + \beta^{n-1} = \sum_{j=0}^{\infty} \beta^j - \beta^n \left[1 + \beta + \beta^2 + \ldots + \beta^{n-1} + \ldots\right]$$

$$= (1 - \beta^n) \sum_{j=0}^{\infty} \beta^j$$
$\beta = \left(1 + d\right)^{-1}$,

where d is the interest or discount rate and so...
UNIFORM CASH–FLOW SET

\[1 - \beta = 1 - \frac{1}{1+d} = \frac{d}{1+d} = \beta d \]

We write

\[P = A \cdot \frac{1 - \beta^n}{d} \]

and we call \(\frac{1 - \beta^n}{d} \) the equal payment series present worth factor.
We consider two cash-flow sets under a given discount rate d.

We say $\{A_t^a: t = 0, 1, 2, \ldots, n\}$ and $\{A_t^b: t = 0, 1, 2, \ldots, n\}$ are equivalent cash-flow sets if and only if

$$F_m \text{ of } \{A_t^a\} = F_m \text{ of } \{A_t^b\} \text{ for every value of } m$$
Consider the two cash-flow sets under $d = 7\%$.
EQUIVALENCE

We compute

\[P^a = 2,000 \sum_{t=3}^{7} \beta^t = 7,162.55 \]

and

\[P^b = 8,200.40 \beta^2 = 7,162.55 \]

Therefore, \(\{ A^a_t \} \) and \(\{ A^b_t \} \) are equivalent cash flow sets under \(d = 7\% \)
EXAMPLE

Consider the cash-flow set illustrated below.

We compute F_8 at $t = 8$ for $d = 6\%$.
EXAMPLE

\[F_8 = 300 \left(1 + .06\right)^7 - 300 \left(1 + .06\right)^5 + 200 \left(1 + .06\right)^4 + 400 \left(1 + .06\right)^2 + 200 \]

= $951.56

- We also compute \(P \)
EXAMPLE

\begin{align*}
P &= 300 \left(1 + 0.06\right)^{-1} - 300 \left(1 + 0.06\right)^{-3} + \\
&\quad 200 \left(1 + 0.06\right)^{-4} + 400 \left(1 + 0.06\right)^{-6} + 200 \left(1 + 0.06\right)^{-8} \\
&= \$597.04
\end{align*}

\(\square\) We check that at \(d = 6\%\)

\begin{align*}
F_8 &= 597.04 \left(1 + 0.06\right)^8 = \$951.56
\end{align*}
DISCOUNT RATE

- The interest rate \(i \) is, typically, referred to as the *discount rate* and is denoted by \(d \).

- In the conversion of the future amount \(F \) to the present worth \(P \), we view the *discount rate* as the interest rate that may be earned from the best investment alternative.

- A postulated savings of \(\$10,000 \) in a project in 5 years is worth at present

\[
P = F_5 \beta^5 = 10,000 (1 + d)^{-5}
\]
DISCOUNT RATE

For $d = 0.1$

$$P = $ 6,201,$$

while for $d = 0.2$

$$P = $ 4,019$$

In general, for a specified future worth, the lower the discount factor, the higher the present worth is
We may state this notion slightly differently; the lower the discount factor, the more valuable a future payoff becomes.

The present worth of a set of costs under a given discount rate is called the *life–cycle costs*, an important term in economic assessment studies.
We consider the purchase of two 100–hp motors – a and b – to be used over a 20–year period; the given discount rate is 10%.

The relative merits of a and b are

<table>
<thead>
<tr>
<th>motor</th>
<th>costs ($)</th>
<th>load (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2,400</td>
<td>79.0</td>
</tr>
<tr>
<td>b</td>
<td>2,900</td>
<td>77.5</td>
</tr>
</tbody>
</table>
EXAMPLE

☐ The motor is used 1,600 hours per year and electricity costs are constant at 0.08 $/kWh

☐ We evaluate yearly energy costs for the two motors

\[
A_t^a = (79.0 \text{ kW})(1600 \text{ h})(0.08 \$/\text{kWh}) = $10,112
\]

\[
t = 1, 2, \ldots, 20
\]

\[
A_t^b = (77.5 \text{ kW})(1600 \text{ h})(0.08 \$/\text{kWh}) = $9,920
\]
We next evaluate the present worth of a and b

$$P^a = 2,400 + 10,112 \sum_{t=1}^{20} (1.1)^{-t} = 8.5136$$

$$= $88,489$

$$P^b = 2,900 + 9,920 \sum_{t=1}^{20} (1.1)^{-t} = 8.5136$$

$$= $87,354$
EXAMPLE

- The difference

\[P^a - P^b = 88,489 - 87,354 = \$1,135 \]

- Therefore, the purchase of motor \(b \) results in the savings of \(\$1,135 \) under the specified 10% discount rate due to the use of the smaller load consumption motor over the 20-year horizon.
Consider a uniform cash–flow set with $n \to \infty$

$$\left\{ A_t = A : t = 0, 1, 2, \ldots \right\}$$

Then,

$$P = A \frac{\left(1 - \beta^n\right)}{d} \xrightarrow{n \to \infty} A \frac{1}{d}$$

For an infinite horizon uniform cash–flow set
We may view d as the *capital recovery factor* with the following interpretation:

For an initial investment of P, the amount

$$d \times P = A$$

is recovered annually in terms of returns on the investment A.
INTERNAL RATE OF RETURN

- We consider a cash–flow set

\[\{ A_t = A : t = 0, 1, 2, \ldots, n \} \]

- The value of \(d \) for which

\[P - \sum_{t=0}^{n} A_t \beta^t = 0 \]

is called the internal rate of return (IRR)

- The IRR is a measure of how quickly we recover an investment, or stated differently, the speed or rate at which the returns recover an investment.
EXAMPLE: INTERNAL RATE OF RETURN

Consider the following cash-flow set:

\[
\begin{align*}
0 & \quad \$30,000 \\
1 & \quad $6,000 \\
2 & \quad $6,000 \\
3 & \quad $6,000 \\
4 & \quad $6,000 \\
8 & \quad $6,000
\end{align*}
\]
The present value

\[P = -30,000 + 6,000 \frac{1 - \beta^8}{d} = 0 \]

has the solution

\[d \approx 12\% \]

The interpretation is that under a 12% discount rate, the present value of the cash-flow set is 0 and so

\[d \approx 12\% \] is the IRR for the given cash-flow set
Consider an *infinite horizon* simple investment.

Therefore

\[d = \frac{A}{I} \]

ratio of annual return to initial investment \(I \)
INTERNAL RATE OF RETURN

Consider

\[I = \$ 1,000 \]
\[A = \$ 200 \]

and

\[d = 20\% \]

We interpret that the returns capture 20% of the investment each year, or equivalently that we have a simple payback period of 5 years.
EXAMPLE: EFFICIENT REFRIGERATOR

- A more efficient refrigerator incurs an investment of additional $1,000 but provides $200 of energy savings annually.

- For a lifetime of 10 years, the IRR is computed from the solution of

\[0 = -1,000 + 200 \frac{1 - \beta^{10}}{d} \]

or
EXAMPLE: EFFICIENT REFRIGERATOR

\[\frac{1 - \beta^{10}}{d} = 5 \]

IRR tables show that

\[\frac{1 - \beta^{10}}{d} \bigg|_{d = 15\%} = 5.02 \]

and so the IRR is approximately 15 %
INFLATION IMPACTS

- Inflation is a general *increase* in the level of prices in an economy; equivalently, we may view inflation as a general *decline* in the value of the purchasing power of money.

- Inflation is measured using prices: different products may have distinct escalation rates.

- Typically, indices such as the *CPI* – the *consumer price index* – use a market basket of goods and
INFLATION IMPACTS

services as a proxy for the entire US economy

- reference basis is the year 1967 with the price of $100 for the basket \(L_0 \)
- in the year 1990, the same basket cost $374 \(L_{21} \)
- the average inflation rate \(j \) is estimated from

\[
(1 + j)^{23} = \frac{374}{100} = 3.74
\]

and so

\[
j = \left(3.74\right)^{\frac{1}{23}} - 1 \approx 0.059
\]
The inflation rate contributes to the overall market interest rate i, sometimes called the combined interest rate.

We write, using d for i

\[
(1 + d) = (1 + j)(1 + d')
\]

combined interest rate

inflation rate

real interest rate
INFLATION

We obtain the following identities

\[d' = \frac{d - j}{1 + j} \]

and

\[j = \frac{d - d'}{1 + d'} \]
We express the cash flow in then current dollars in the set \(\{ A_t: t = 0, 1, 2, \ldots, n \} \)

The following is synonymous terminology:

\[
\text{current} \equiv \text{then current} \equiv \text{inflated} \equiv \text{after inflation}
\]

An indexed or constant–worth cash–flow is one that does not explicitly take inflation into account, i.e.,
CASH – FLOWS INCORPORATING INFLATION

whatever amount in current inflated dollars will

buy the same goods and services as in the

reference year, typically, the year 0

The following terms are synonymous

$constant \equiv indexed \equiv inflation\ free \equiv before\ inflation$

and we use them interchangeably
We define the set of constant currency flows

\[\{ W_t : t = 0, 1, 2, \ldots, n \} \]

corresponding to the set

\[\{ A_t : t = 0, 1, 2, \ldots, n \} \]

with each element \(A_t \) given in period \(t \) currency.
We use the relationship

\[A_t = W_t \left(1 + j\right)^t \]

or equivalently

\[W_t = A_t \left(1 + j\right)^{-t} \]

with \(W_t \) expressed in reference year 0 (today’s) dollars
We have

\[P = \sum_{t=0}^{n} A_t \beta^t \]

\[= \sum_{t=0}^{n} W_t (i + j)^t (i + d)^{-t} \]

\[= \sum_{t=0}^{n} W_t (i + j)^t (i + j)^{-t} (i + d')^{-t} \]

\[= \sum_{t=0}^{n} W_t (i + d')^{-t} \]
Therefore, the real interest rate d' is used to discount the indexed cash flows.

In summary,

- We discount current dollar cash flow at d
- We discount indexed dollar cash flow at d'
Whenever inflation is taken into account, it is convenient to carry out the analysis in present worth rather than future worth or on a cash–flow basis.

Under inflation \((j > 0)\), it follows that a uniform set of cash flows \(\{A_t = A: t = 1, 2, \ldots, n\}\) implies a real decline in the cash flows.
EXAMPLE: INFLATION CALCULATIONS

- We consider an annual inflation rate of $j = 4\%$;

the cost for a piece of equipment is assumed
constant for the next 3 years in terms of today’s $\

\[W_0 = W_1 = W_2 = W_3 = $1,000 \]

- The corresponding cash flows in current $\$ are

\[A_0 = $1,000 \]
\[A_1 = 1,000 \left(1 + .04\right) = $1,040 \]
EXAMPLE: INFLATION CALCULATIONS

$$A_2 = 1,000(1 + .04)^2 = \$1,081.60$$

$$A_3 = 1,000(1 + .04)^3 = \$1,124.86$$

- The interpretation of A_3 is that under 4% inflation,

 $\$1,125$ in 3 years will have the same value as

 $\$1,000$ today; it must not be confused with the

 present worth calculation
For the motor \(a \) or \(b \) purchase example, we consider the escalation of electricity at an annual rate of \(j = 5 \% \).

We compute the \(NPV \) taking into account the inflation (price escalation of \(5 \% \)) and \(d = 10 \% \).

Then,

\[
d' = \frac{d - j}{1 + j} = \frac{.10 - .05}{1 + .05} = \frac{.05}{1.05} = 0.04762
\]
The savings of $192 per year are in constant dollars

\[
P_{\text{savings}} = \sum_{t=1}^{20} W_t (1 + d')^{-t} = 0.04762
\]

and so

\[
P_{\text{savings}} = $2,442
\]

The total savings are

\[
P = -500 + P_{\text{savings}} = $1,942
\]

which are larger than those of $1,135 without electricity price escalation.
EXAMPLE: IRR FOR HVAC RETROFIT WITH INFLATION

☐ An energy efficiency retrofit of a commercial site reduces the HVAC load consumption to 0.8 GWh from 2.3 GWh and the peak demand by 0.15 MW.

☐ Electricity costs are 60 $/MWh and demand charges are 7,000 $/(MW−mo) and these prices escalate at an annual rate of \(j = 5 \% \).

☐ The retrofit requires a $500,000 investment today and is planned to have a 15–year lifetime.
EXAMPLE: \textit{IRR FOR HVAC RETROFIT WITH INFLATION}

We evaluate the \textit{IRR} for this project.

The annual savings are

\begin{align*}
\text{energy} & : \left(2.3 - 0.8 \right) \text{GWh} \left(60 \ $ / \text{MWh} \right) = \$ 90,000 \\
\text{demand} & : \left(0.15 \text{ MW} \right) \left(7000 \ $ / (\text{MWh} - \text{mo}) \right) 12\text{mo} = \$ 12,600 \\
\text{total} & : 90,000 + 12,600 = \$ 102,600
\end{align*}

The \textit{IRR} is the value of \(d^\prime\) that results in
EXAMPLE: *IRR FOR HVAC RETROFIT WITH INFLATION*

\[0 = -500,000 + 102,600 \frac{1 - (\beta')^{15}}{d'} \]

The table look up produces the \(d' \) of 19% and with inflation factored in, we have

\[
(1 + d) = (1 + j)(1 + d')
\]

\[
= (1.05)(1.19)
\]

\[= 1.25 \]

resulting in a combined *IRR* of 25%
A capital investment, such as a renewable energy project, requires funds, either borrowed from a bank, or obtained from investors, or taken from the owner’s own accounts.

Conceptually, we may view the investment as a loan that converts the investment costs into a series of equal annual payments to pay back the loan with the interest.
For this purpose, we use a uniform cash–flow set and use the relation

\[P = A \frac{1 - \beta^n}{d} \]

present equal equal payment series
door worth payment term present worth factor
Therefore, the equal payment is given by

\[A = P \frac{d}{1 - \beta^n} \]

capital recovery factor

The capital recovery factor measures the speed with which the initial investment is repaid.
An efficiency upgrade of an air conditioner incurs a $1,000 investment and results in annual savings of $200.

The $1,000 is obtained as a 10-year loan repaid at 7% interest.

The repayment on the loan is done as a uniform cash flow:

\[
A = 1,000 \frac{0.07}{1 - \beta^{10}} = $142.38
\]
The annual net savings are

$$200 - 142.38 = 57.62$$

and not only are the savings sufficient to pay back the loan in 10 years, they also provide a yearly surplus of $57.62.

The benefits/costs ratio is

$$\frac{200}{142.38} = 1.4$$
 EXAMPLE: PV SYSTEM

- We consider a 3 – kW PV system whose capacity factor $\kappa = 0.25$

- The investment incurred $10,000 and the funds are obtained as a 20 – year 6 % loan

- The annual loan repayments are

$$A = 10,000 \frac{0.06}{1 - \beta^{20}} = 10,000(0.0872) = \$ 872$$
EXAMPLE: PV SYSTEM

- The annual energy generated is

\[(3)(0.25)(8,760) = 6,570 \text{ kWh}\]

- We can compute the unit costs of electricity for break-even operation to be

\[\frac{872}{6,570} = 0.133 \text{ $ / kWh}\]
The comparison of various alternatives must be carried out on a consistent basis taking into account:

- inflation impacts
- fixed investment costs
- variable costs

The customary approach for cost valuation consists of the following steps:
LEVELIZED BUS – BAR COSTS

- present worthing of all the cash–flow
- determining the equal amount of an equivalent annual uniform cash–flow set
- determination of the yearly total generation

The ratio of the equal amount to the total generation is called the *levelized bus–bar* costs of energy.
EXAMPLE: MICROTURBINE ENGINE

- We consider the economics of a microturbine

 with the characteristics given in the table below

- We calculate

 - annualized fixed costs
 - initial year variable costs
 - inflation impacts
EXAMPLE: MICROTURBINE ENGINE

<table>
<thead>
<tr>
<th>characteristic</th>
<th>value</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>investment costs</td>
<td>850</td>
<td>$ / kW</td>
</tr>
<tr>
<td>heart rate</td>
<td>12,500</td>
<td>Btu / KWh</td>
</tr>
<tr>
<td>capacity factor</td>
<td>0.7</td>
<td>—</td>
</tr>
<tr>
<td>fuel costs (year 0)</td>
<td>4.00×10^{-6}</td>
<td>$ / Btu</td>
</tr>
<tr>
<td>annual fuel escalation rate</td>
<td>6</td>
<td>%</td>
</tr>
<tr>
<td>variable O&M costs</td>
<td>0.002</td>
<td>$ / kWh</td>
</tr>
<tr>
<td>annual investor discount rate</td>
<td>10</td>
<td>%</td>
</tr>
<tr>
<td>fixed charge rate</td>
<td>12</td>
<td>%</td>
</tr>
<tr>
<td>life time</td>
<td>20</td>
<td>y</td>
</tr>
</tbody>
</table>
EXAMPLE: MICROTURBINE ENGINE

- The annualized fixed costs are

\[
\frac{(850 \$/kW)(12 \%)}{(8760 \text{h})(0.70)} = 0.0166 \ \$/kWh
\]

- The initial year variable costs are

\[
A_0 = \left(12.500 \text{Btu/kWh}\right)\left(4 \times 10^{-6} \$/\text{Btu}\right) + 0.002 \ \$/kWh
\]

\[
= 0.052 \ \$/kWh
\]

- We next account for inflation and we compute

\[
d' = \frac{d - j}{1 + j} = \frac{0.1 - 0.06}{1 + 0.06} = 0.037736
\]
The constant uniform cash – flow set with fuel escalation incorporated is

\[A_0 \cdot \frac{1 - (\beta')^{20}}{d'} = 0.052 \left(1 - \frac{1}{\frac{1.037736}{0.0037736}} \right)^{20} \]

and the levelized annual costs are
EXAMPLE: MICROTURBINE ENGINE

\[
0.052 \left(\frac{1 - \left(\frac{1}{1.037736} \right)^{20}}{0.0037736} \right) \left(\frac{0.10}{1 - \left(\frac{1}{1.1} \right)^{20}} \right) = 0.0847 \$/kWh
\]

- The levelized bus – bar costs are, therefore,

\[
0.0166 + 0.0847 = 0.1013 \$/kWh
\]