Name:

Section (Check One) MWF 10am _____ TR 12:30pm _____

1. ______/ 25 2. _____/ 25

3. _____/ 25 4. ____/ 25

Total _____/ 100

Useful information

$$\sin(x) = \cos(x - 90^{\circ})$$
 $\overline{V} = \overline{ZI}$ $\overline{S} = \overline{VI}^{*}$ $\overline{S}_{3\phi} = \sqrt{3}V_{L}I_{L} \angle \theta$

$$\overline{V} = \overline{Z}\overline{I}$$

$$\overline{S} = \overline{VI}$$

$$\overline{S}_{3\phi} = \sqrt{3}V_L I_L \angle \theta$$

$$0 < \theta < 180^{\circ} \text{ (lag)}$$
 $I_L = \sqrt{3}I_{\phi} \text{ (delta)}$

$$0 < \theta < 180^{\circ} \text{ (lag)}$$
 $I_L = \sqrt{3}I_{\phi} \text{ (delta)}$
 $-180^{\circ} < \theta < 0 \text{ (lead)}$ $V_L = \sqrt{3}V_{\phi} \text{ (wye)}$

$$\overline{Z}_Y = \overline{Z}_\Delta / 3$$

$$\overline{Z}_Y = \overline{Z}_\Delta / 3$$
 $\mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}$

$$\int_{a} \mathbf{H} \cdot \mathbf{dl} = \int_{a} \mathbf{J} \cdot \mathbf{n} da$$

$$\int_{C} \mathbf{H} \cdot \mathbf{dl} = \int_{S} \mathbf{J} \cdot \mathbf{n} da \qquad \int_{C} \mathbf{E} \cdot \mathbf{dl} = -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot \mathbf{n} da \qquad \Re = \frac{l}{uA} \qquad MMF = Ni = \phi \Re$$

$$\Re = \frac{l}{\mu A}$$

$$MMF = Ni = \phi \Re$$

$$\phi = BA$$

$$\lambda = N\phi$$

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

$$\phi = BA$$
 $\lambda = N\phi$ $k = \frac{M}{\sqrt{L_1 L_2}}$ 1 hp = 746 Watts

$$V_1 = L_1 \frac{di_1}{dt} - M \frac{di_2}{dt}$$

$$\alpha = \frac{N_1}{N_2} \qquad N_1 \dot{\nu}_1 = N_2 \dot{\nu}_2$$

$$\frac{V_1}{V_2} = \frac{N_1}{N_2}$$

Problem 1. (25 points)

The electrical service to your house is called 120/240 Volts, single phase, 3 wire. It consists of 3 wires named L_1 , L_2 , and N coming into your house from the transformer in the back. The voltage drop from L_1 to N is 120 volts angle zero. The voltage drop from L_2 to N is 120 volts angle 180 degrees. The neutral wire (N) is at ground potential. Suppose you hook up loads to these circuits as follows:

- A fan between L_1 and N that draws 5 Amps at a power factor of 0.8 lag.
- A toaster between L₂ and N that draws 11 Amps at unity power factor.
- An air conditioner between L₁ and L₂ that draws 24 Amps at a power factor of 0.85 lag.
- a) What is the total real power consumed by your house when the things above are turned on?
- b) How much current is in each of the three wires (magnitude only) when all the things above are turned on?

Problem 2. (25 pts)

A 345 KV(line-to-line) three-phase line supplies 750 MVA (3-phase) at 0.8 PF lagging to a three-phase load which is delta connected.

- a) Find the complex impedance per phase of the load
- b) Find the magnitudes of the line and phase currents
- c) Find the MVAR (3-phase) rating of a capacitor bank needed to improve the power factor to be 0.95 lagging.
- d) What will the line current be after the capacitors are installed.

Problem 3. (25 points)

A magnetic core with infinite permeability (μ = ∞) is shown below.

For this problem, you can ignore any resistance in the coil, and any fringing effects in the gaps. The cross sectional area of the core is 1 cm^2 , $N_1 = 10$, $N_2 = 40$, g = 1 mm.

- a) Identify the dot markings of the two windings.
- b) Draw the magnetic equivalent circuit.
- c) Find the magnitudes of the self-inductances, the mutual inductance, and the coupling coefficient k. Note, this part of the problem requires quite a bit of math. If you are short on time, you may want to consider doing the next problem and coming back to this part if time permits.

Problem 4. (25 points)

a) An ideal single-phase 60 Hz transformer as shown below is used to supply power to a complex load drawing 1 KW at 0.8 power factor lagging.

- 1) Find the load impedance as seen from the high voltage side.
- 2) Find the magnitudes of currents I_1 and I_2 .
- b) The coupled coils L_1 and L_2 are connected in the circuit below (note that L_3 is a regular inductor, and is not coupled).

1) Write the two loop equations. You do not need to solve them.