ACE 330 Exam \#2, Fall 2018 Name: \qquad Solution 90 Minutes

Section (Check One) MWF Yam \qquad MWF 10am \qquad

1. \qquad $125 \quad 2$. \qquad / 25
2. \qquad / 25
3. \qquad / 25

Total \qquad / 100

Useful information

$$
\begin{array}{ll}
\sin (x)=\cos \left(x-90^{\circ}\right) & \bar{V}=\overline{Z \prime} \quad \bar{S}=\overline{V^{\prime}} \quad \mu_{0}=4 \pi \cdot 10^{-7} \mathrm{H} / \mathrm{m} \\
\int_{C} H \cdot \mathrm{~d}^{\prime}=\int_{S} J \cdot{ }_{\mathrm{nda}} \quad \int_{C} E \cdot \cdot_{\mathrm{d} \prime}=-\frac{\partial}{\partial_{t}} \int_{S} B \cdot{ }_{\mathrm{n} d a} \quad M M F=N_{i}=\phi R \\
\mathfrak{R}=\frac{1}{\mu A} \quad B=\mu H \quad \phi=B A \quad \lambda=N \phi \quad \lambda=L_{i} \text { (if linear) }
\end{array}
$$

$$
\begin{aligned}
& W_{m}=\int_{0}^{\lambda} i d \hat{\lambda} \quad W_{m}^{\prime}=\int_{0} \lambda d \hat{i} \quad W_{m}+W_{m}^{\prime}=\lambda_{i} \quad f^{\circ}=\frac{\partial W_{m}^{\prime}}{\partial x}=-\frac{\partial W_{m}}{\partial x} \quad x \rightarrow \theta \\
& \quad f^{\circ} \rightarrow T^{\circ} \\
& E F \in=\int_{o}^{b} i d \lambda \quad \underset{a \rightarrow b}{E F M}=-\int_{0}^{b} f^{\circ} d x \quad \underset{\substack{0}}{E F E}+\underset{a \rightarrow b}{E F M}=W_{m b}-W_{m o} \quad \lambda=\frac{\partial W_{m}^{\prime}}{\partial i} \quad i=\frac{\partial W_{m}}{\partial \lambda}
\end{aligned}
$$

$$
\dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \text { and } \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
$$

$$
x\left(t_{0}+\Delta t\right) \approx x\left(t_{0}\right)+\left.\Delta t \cdot \frac{d x}{d t}\right|_{t=t_{0}}
$$

Problem 1A (7 points)
For the system shown below, draw the physical system that was probably used to create this model (show the coil orientation and the angle definition):

$$
\begin{aligned}
& \lambda_{\mathrm{a}}=L_{\mathrm{a}} i_{\mathrm{a}}+M \cos \theta i_{\mathrm{c}} \\
& \lambda_{\mathrm{b}}=L_{\mathrm{b}} i_{\mathrm{b}}+M \sin \theta i_{\mathrm{c}} \\
& \lambda_{\mathrm{c}}=L_{\mathrm{c}} i_{\mathrm{c}}+M \cos \theta i_{\mathrm{a}}+M \sin \theta i_{\mathrm{b}}
\end{aligned}
$$

Problem 1B (18 points)

For the structure drawn below, the movable member is constrained to move left and right only as indicated in the figure where " x " is the distance to the edge of the movable member. The large members are fixed, and the depth into the page for all members is 2 cm . The gap g_{g} is 1 mm , and the number of turns $\mathrm{N}=100$. You may neglect fringing in all the gaps, and you may assume the iron is infinitely permeable.

a) Find the total reluctance of the main flux path in terms of x
b) Find the flux linkage, λ (defined for the voltage polarity shown)
c) Find an expression for the voltage, v in terms of x, i, and time t
b) $\phi=\frac{N_{i}}{R_{\text {tot }}}$

c) $V=i R+\frac{d \lambda}{d t}$

(Extra page at the end if you need it)

Problem 2 (25 Points)
A stator-rotor system has flux linkage given as

$$
\begin{aligned}
& \lambda_{s}=L_{s}(1+\cos (2 \theta)) i_{s}+M(9 \cos (\theta)+\cos (3 \theta)) i_{r} \\
& \lambda_{r}=M(9 \cos (\theta)+\cos (3 \theta)) i_{s}+L_{r}(1+\cos (2 \theta)) i_{r}
\end{aligned}
$$

a) Find the co-energy $W_{m}{ }^{\prime}$.
b) Find the torque of electric origin T^{e}.
c) What is the torque when $L_{s}=L_{r}=1 \mathrm{H}, M=1.3 \mathrm{H}, i_{s}=1 \mathrm{~A}, i_{r}=0.1 \mathrm{~A}$, and $\theta=-45^{\circ}$?

$$
\text { a) } \begin{aligned}
W_{r}^{\prime} & =\int_{0}^{i_{s}} \lambda_{s}\left(\hat{i}_{s}, i_{r}=0, \theta\right) d \hat{i}_{s}+\int_{0}^{i_{r}} \lambda_{r}\left(i_{s}, \hat{i}_{r}, \theta\right) d \hat{i}_{r} \\
& =\int_{0}^{i_{s}} L_{s}(1+\cos (2 \theta)) \hat{i}_{s} d \hat{i}_{s}+\int_{0}^{i_{r}}\left[M(9 \cos (\theta)+\cos (30)) i_{s}+L_{r}(1+\cos (20)) \hat{i}_{r}\right] d \hat{i}_{r} \\
W_{m}^{\prime} & =\frac{1}{2} L_{s}(1+\cos (2 \theta)) i_{s}^{2}+M(9 \cos (\theta)+\cos (30)) i_{s} i_{r}+\frac{1}{2} L_{r}(1+\cos (20)) i_{r}^{2} \\
W_{m}^{\prime} & =\frac{1}{2}\left[L_{s} i_{s}^{2}+L_{r} i_{r}^{2}\right](1+\cos (20))+M(9 \cos (\theta)+\cos (3 \theta)) i_{s} i_{r}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \\
& T^{e}=\frac{\partial \omega_{m}^{\prime}}{\partial \theta} \\
& \begin{array}{l}
T^{e}=\frac{1}{2}\left[L_{s} i_{s}^{2}+L_{r} i_{r}^{2}\right](-2 \sin (2 \theta))+M(-9 \sin (\theta)-3 \sin (3 \theta)) i_{s} i_{r} \\
T^{e}=-\left[L_{s} i_{s}^{2}+L_{r} i_{r}^{2}\right] \sin (2 \theta)-M(9 \sin (\theta)+3 \sin (3 \theta)) i_{s} i_{r}
\end{array} \\
& \text { c) } T^{c}=-\left[1(1)^{2}+1(0.1)^{2}\right] \sin \left(2\left(-45^{\circ}\right)\right)-1.3\left(9 \sin \left(-45^{\circ}\right)+3 \sin \left(3\left(-45^{\circ}\right)\right)\right)(1)(0.1)
\end{aligned}
$$

$$
\begin{aligned}
& T^{e}=1.01+1.103 \\
& T^{e}=2.113 \mathrm{Nm}
\end{aligned}
$$

(Extra page at the end if you need it)

Problem 3 (25 Points)
A certain system has flux linkage given as

$$
\lambda=\frac{0.3}{x-0.01} i^{2} \quad \text { with the constraint that } \times>0.01 .
$$

Find the energy from the mechanical system (EFM) and the energy from the electrical system (EFE) as the system moves from ${ }_{x}=0.020 \mathrm{~m}$ to $x_{x}=0.015 \mathrm{~m}$ while ${ }_{i}$ is held constant at ${ }_{i}=2 \mathrm{~A}$.

$$
E F M=\int_{a \rightarrow b}^{b}-f^{c} d x
$$

$f^{e}=\frac{\partial W_{m}^{\prime}}{\partial x} \Rightarrow f^{e}=\frac{-0.1}{(x-0.01)^{2}} i^{3}$

$$
f^{c}=\frac{\partial W_{m}}{\partial x} \Rightarrow+(x-0.01) \quad W_{0}^{i}=\int_{0}^{i} \lambda d_{i}^{e} \Rightarrow \int_{0}^{i} \frac{0.3}{x-0.0} \dot{i}^{2} d^{2} i \Rightarrow W_{m}^{1}=\frac{0.1}{x-0.01} i^{3}
$$

$$
\begin{aligned}
& W_{m}^{\prime}=\int_{0} \lambda d i \Rightarrow W_{m}=\int_{0}^{x-0.0} \\
& E F M=\int_{a \rightarrow b}^{0.015} \frac{0.1}{(x-0.0)^{2}}(2)^{3} d x \Rightarrow \operatorname{EFM}_{a \rightarrow b}^{0.015}=\int_{0.02}^{0.8} \frac{0.8}{(x-0.01)^{2}} d x \Rightarrow{\underset{a \rightarrow b}{E M}=\left.\frac{-0.8}{x-0.01}\right|_{0.02} ^{0.015}}^{E F M=-0.8[1}
\end{aligned}
$$

$w_{m}+W_{m}^{\prime}=\lambda i$
$\underset{a \rightarrow b}{E F M}=-0.8\left[\frac{1}{0.015-0.01}-\frac{1}{0.02-0.01}\right]$
$\omega_{m}=\lambda i-\omega_{m}^{\prime}$

$$
W_{m}=\frac{0.3}{x-0.01} i^{3}-\frac{0.1}{x-0.01} i^{3}
$$

$$
w_{m}=\frac{0.2}{x-0.01} i^{3}
$$

$$
W_{m a}=\frac{0.2}{0.02-0.0}(2)^{3} \Rightarrow W_{m a}=160 \mathrm{~J}
$$

$$
W_{m b}=\frac{0.2}{0.015-0.09}(2)^{3} \Rightarrow W_{m b}=3205
$$

$$
\underset{a \rightarrow b}{E E E}+\underset{a \rightarrow b}{E F M}=W_{m b}-U_{m a}
$$

$$
\underset{a \rightarrow 6}{E F E}=320-160-(-80)
$$

$$
{\underset{a}{a \rightarrow b}}_{E F E=240 \mathrm{~J}}
$$

(Extra page at the end if you need it)

Problem 4 (25 Points)
A spring pendulum has equations of motion given as

$$
\begin{gathered}
m \ddot{r}=-k\left(r-R_{0}\right)+m g \cos (\theta)+m r \dot{\theta}^{2} \\
m r \ddot{\theta}=-m g \sin (\theta)-2 m \dot{r} \dot{\theta}
\end{gathered}
$$

where m is the mass of the attached object, R_{0} is the unstretched length of the spring, and the dot notation signifies a time derivative, i.e. $\frac{d r}{d t}=\dot{r}$.
For this given system,
a) Find the equilibrium positions.
b) Rewrite the equations of motion in state space form
c) If the spring pendulum initially starts at $r(0)=R_{0}, \dot{r}(0)=0, \theta(0)=\frac{\pi}{12}, \dot{\theta}(0)=0$, use $\Delta t=0.001 \mathrm{~s}$ to determine the state variables at $t=0.002 \mathrm{~s}$ using $R_{0}=1 \mathrm{~m},{ }_{k}=200 \mathrm{~N} / \mathrm{m}, m=2 \mathrm{~kg}$, and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.

a)at equilibrium:$r=r$$=0$ $\dot{\theta}=\ddot{\theta}=0$	
0	$=-k\left(r-R_{0}\right)+m g \cos (\theta)$
0	$=-m g \sin (\theta)$
$\sin (\theta)=0$	
$\theta=0, \pi$	

$\theta=0$:
$0=-k\left(r-R_{0}\right)+m g$
$k\left(r-R_{0}\right)=m g$
$r-R_{0}=\frac{m g}{k}$
$r=R_{0}+\frac{m g}{k}$
$\theta=\pi:$
$0=-k\left(r-R_{0}\right)-m g$
$k\left(r-R_{0}\right)=-m g$
$r-R_{0}=-\frac{m g}{k}$
$r=R_{0}-\frac{m g}{k}$
$\theta=0, r=R_{0}+\frac{m a}{k}$
$\theta=\pi, r=R_{0}-\frac{m a}{k}$
b) $\ddot{r}=\frac{-k}{m}\left(r-R_{0}\right)+g \cos (\theta)+r \dot{\theta}^{2}$

