ECE430

Spring 2006
Exam 2
April 12, 2006
Name: KEY
1: \qquad
2: \qquad
4:
Total: \qquad

Section (C for Kimball MWF, F for Tate TR) \qquad

Equations:
$\bar{S}_{1 \phi}=\overline{V I} \bar{I}^{*}=\frac{|\bar{V}|^{2}}{\bar{Z}^{*}}=|\bar{I}|^{2} \bar{Z}$
$\bar{S}_{3 \phi}=3 \bar{V}_{\phi} \bar{I}_{\phi}^{*}=\sqrt{3} V_{L} I_{L} \measuredangle \theta$
$P_{3 \phi}=\sqrt{3} V_{L} I_{L} \cos \theta$
$Q_{3 \phi}=\sqrt{3} V_{L} I_{L} \sin \theta$
$p f=\cos (\measuredangle \bar{V}-\measuredangle \bar{I})$
$\theta>0 \rightarrow$ lagging,$\theta<0 \rightarrow$ leading
$P^{2}+Q^{2}=S^{2}$
$X_{c}=-\frac{1}{\omega C}$
$X_{L}=\omega L$
wye, $a b c$ sequence $: \bar{V}_{L}=\bar{V}_{\phi}\left(\sqrt{3} \measuredangle 30^{\circ}\right), \bar{I}_{\phi}=\bar{I}_{L}$
delta, abc sequence $: \bar{V}_{\phi}=\bar{V}_{L}, \bar{I}_{L}=\bar{I}_{\phi}\left(\sqrt{3} \measuredangle-30^{\circ}\right)$
$\bar{Z}_{\Delta}=3 \bar{Z}_{Y}$
$\bar{Z}_{1} \| \bar{Z}_{2}=\left(\bar{Z}_{1}^{-1}+\bar{Z}_{2}^{-1}\right)^{-1}$

Transformer Approximate Equivalent Circuit

$R=\frac{l}{\mu A}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
$\lambda=N \Phi=L i$
$L=N^{2} \mathscr{P}=\frac{N^{2}}{\mathfrak{R}}$
$m m f($ source $)=N i$
$m m f($ drop $)=\Phi \mathfrak{R}$
$\sum m m f=0$ around loop
$\oint \vec{H} \cdot d \vec{l}=\int \vec{J} \cdot \hat{n} d a$
$\oint \vec{E} \cdot d \stackrel{\rightharpoonup}{l}=-\frac{\partial}{\partial t} \int \stackrel{\rightharpoonup}{B} \cdot \hat{n} d a$
$\oint \vec{B} \cdot \hat{n} d a=0$
$k=\frac{M}{\sqrt{L_{1} L_{2}}}$
$v=\frac{d \lambda}{d t}$

Transformer Equivalent Circuit

$$
\begin{aligned}
& W_{m}=\int_{0}^{\lambda} i d \hat{\lambda} \\
& W_{m}^{\prime}=\int_{0}^{i} \lambda d \hat{i} \\
& T^{e}=\frac{\partial W_{m}^{\prime}}{\partial \theta}=-\frac{\partial W_{m}}{\partial \theta} \\
& f^{e}=\frac{\partial W_{m}^{\prime}}{\partial x}=-\frac{\partial W_{m}}{\partial x} \\
& \underset{a \rightarrow b}{E F E}=\int_{a}^{b} i d \lambda \\
& E \underset{a \rightarrow b}{E F M}=-\int_{a}^{b} f^{e} d x
\end{aligned}
$$

$$
\text { For } \dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \text { and } \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right) \text {, }
$$

$$
\left[\begin{array}{l}
\Delta \dot{x}_{1} \\
\Delta \dot{x}_{2}
\end{array}\right] \approx\left[\left.\left.\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}
\end{array}\right|_{x=x^{e}} \quad \frac{\partial f_{1}}{\partial x_{2}}\right|_{x=x^{e}}\left[\left.\left.\begin{array}{ll}
\Delta x_{1} \\
\frac{\partial f_{2}}{\partial x_{1}}
\end{array}\right|_{x=x^{e}} \quad \frac{\partial f_{2}}{\partial x_{2}}\right|_{x=x^{e}}\right]\left[\begin{array}{l}
\Delta x_{2}
\end{array}\right]\right.
$$

$$
x\left(t_{0}+\Delta t\right) \approx x\left(t_{0}\right)+\left.\Delta t \cdot \frac{d x}{d t}\right|_{t=t_{0}}
$$

For $\underline{\dot{x}}=\underline{A} \underline{x}$, the eigenvalues λ of the system are given by $|\lambda \underline{I}-\underline{A}|=0$

Problem 1 (25 points)

In class, when discussing rotational systems, we started with an inductance that was a square wave, then approximated it with a sinusoid. A better approximation is to include harmonics. For example, consider a system with the following λ-i characteristic:

$$
\left[\begin{array}{c}
\lambda_{a} \\
\lambda_{b} \\
\lambda_{r}
\end{array}\right]=\left[\begin{array}{ccc}
L_{s} & 0 & M(\cos \theta-0.1 \cos (3 \theta)) \\
0 & L_{s} & M(\sin \theta+0.1 \sin (3 \theta)) \\
M(\cos \theta-0.1 \cos (3 \theta)) & M(\sin \theta+0.1 \sin (3 \theta)) & L_{r}
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{r}
\end{array}\right]
$$

a) Find the co-energy W_{m}^{\prime} (10 points)
b) Find the torque of electric origin T^{e} (10 points)
c) Suppose $i_{a}=i_{b}=i_{r}=1 A, L_{s}=L_{r}=1 H, M=0.9 H$, and $\theta=60^{\circ}$. What is the difference in torque between considering only the fundamental (θ variation) and including harmonics (30 variation)? (5 points)
(.a)

$$
\begin{aligned}
\omega_{m}^{\prime}=\int d d i= & \frac{1}{2} L_{s} i_{a}^{2}+\frac{1}{2} L_{s} i_{b}^{2}+\frac{1}{2} L_{r} i_{r}^{2} \\
& +M(\cos \theta-0.1 \cos 3 \theta) i_{a} i_{r} \\
& +M(\sin \theta+0.1 \sin 3 \theta) i_{b} i_{r}
\end{aligned}
$$

b)

$$
\begin{aligned}
T_{e}=\frac{\partial w_{r}^{\prime}}{\partial \theta}= & (-M \sin \theta+0.3 M \sin 3 \theta) i_{a} i_{r} \\
& +(M \cos \theta+0.3 M \cos 3 \theta) i_{b} i_{r}
\end{aligned}
$$

c)

$$
\begin{aligned}
& T \mathcal{L}(\theta \operatorname{ooly})-T^{e}(\theta, 3 \theta) \Rightarrow(0.3 M \sin 3 \theta) i_{a} i_{r}+(0.3 M \cos 3 \theta) i_{b} i_{r} \\
& \left.\Delta T^{e}=0.3(0.9)(1)^{i_{r}}(0)^{i_{i}} \sin 180^{\circ}+(1)^{i_{1}} \cos 180^{\circ}\right)=-0.27
\end{aligned}
$$

Problem 2
A system is described with the following state space equations:
$\dot{x}_{1}=-2 x_{1}+4 x_{2}$
$\dot{x}_{2}=-2 x_{1}-8 x_{2}$
a) Is this system stable? (10 points)
b) What steady-state values will $x_{1}(\mathrm{t})$ and $x_{2}(\mathrm{t})$ reach as t goes to infinity? (5 points)
c) Use Forward Euler to calculate $x_{1}(\mathrm{t})$ and $x_{2}(\mathrm{t})$ at $\mathrm{t}=0.2$ seconds using a step size of 0.1 seconds. Use the following initial conditions: $x_{1}(0)=4, x_{2}(0)=1$. (10 points)
a) $A=\left[\begin{array}{cc}-2 & 4 \\ -2 & -8\end{array}\right] \quad \lambda I-A=\left[\begin{array}{cc}\lambda+2 & -4 \\ 2 & \lambda+8\end{array}\right]$
$|\lambda I-A|=\lambda^{2}+10 \lambda+16+8$
$\lambda=-4,-6 ; \operatorname{Re}\{\lambda\}<0$ for all λ, so stable. $=(\lambda+6)(\lambda+4)$
b) $\left[\begin{array}{cc}-2 & 4 \\ -2 & -8\end{array}\right]\left[\begin{array}{l}x_{1}^{e} \\ x_{2}^{e}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \rightarrow\left[\begin{array}{l}x_{1}^{e} \\ x_{2}^{e}\end{array}\right]=\left[\begin{array}{cc}-8 / 24 & -4 / 24 \\ 2 / 24 & -\frac{2}{24}\end{array}\right]\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \rightarrow x_{1}^{e}=x_{2}^{e}=0$ c) $\left[\begin{array}{l}x_{1}(0.1) \\ x_{2}(0.1)\end{array}\right]=\left[\begin{array}{l}4 \\ 1\end{array}\right]+(0.1)\left[\begin{array}{c}-2.4+4.1 \\ -2.4-8.1\end{array}\right]=\left[\begin{array}{l}4 \\ 1\end{array}\right]+0.1\left[\begin{array}{c}-4 \\ -16\end{array}\right]=\left[\begin{array}{c}3.6 \\ -0.6\end{array}\right]$ $\left[\begin{array}{l}x_{1}(0.2) \\ x_{2}(0.2)\end{array}\right]=\left[\begin{array}{c}3.6 \\ -0.6\end{array}\right]+(0.1)\left[\begin{array}{l}-2 \cdot 3.6+4 \cdot(-0.6) \\ -2 \cdot 3.6-8 \cdot(-0.6)\end{array}\right]=\left[\begin{array}{l}3.6 \\ -0.6\end{array}\right]+0.1\left[\begin{array}{l}-9.6 \\ -2.4\end{array}\right]$
$\left[\begin{array}{l}x_{1}(0.2) \\ x_{2}(0.2)\end{array}\right]=\left[\begin{array}{l}2.64 \\ -0.84\end{array}\right]$

Problem 3
Consider the system:

$$
\begin{aligned}
& \dot{x}_{1}=-x_{2}^{2}+1-x_{1} \\
& \dot{x}_{2}=K x_{1}
\end{aligned}
$$

where K is a real number.
a) Compute all equilibria (5 points)
b) Write the differential equations of the linearized system at each equilibrium (10 points)
c) For each equilibrium, determine the range of values of K such that the system is stable (10 points)
a) $0=-x_{2}^{e^{2}}+1-x_{1}^{e} \quad x_{1}^{e}=0 \quad x_{2}^{e}= \pm 1$

$$
0=k \cdot x_{1}^{e}
$$

b) $\left[\begin{array}{c}\Delta \dot{x}_{1} \\ \Delta \dot{x}_{2}\end{array}\right]=\left[\begin{array}{cr}-1 & -2 x_{2}^{e} \\ k & 0\end{array}\right]\left[\begin{array}{l}\Delta x_{1} \\ \Delta x_{2}\end{array}\right]$

$$
\text { For }(0,1):\left[\begin{array}{cc}
-1 & -2 \\
k & 0
\end{array}\right] \quad(0,-1):\left[\begin{array}{cc}
-1 & 2 \\
k & 0
\end{array}\right]
$$

c) for (0.1):

$$
\begin{gathered}
(\lambda I-A)=(\lambda+1)(\lambda)+2 K=0 \\
\lambda^{2}+\lambda+2 K=0 \\
\lambda=\frac{-1 \pm \sqrt{1-8 K}}{2}
\end{gathered}
$$

Need $\operatorname{Re}\{\lambda\}<0$:

$$
\begin{array}{r}
\text { Need } \operatorname{Re} 2 \lambda s=1+\sqrt{1-8 k}\}<0 \\
\operatorname{Re}\{\sqrt{1-8 k}\}<1 \\
k>0
\end{array}
$$

$$
k>0
$$

For $(0,-1)$

$$
\begin{array}{r}
|\lambda I-A|=(\lambda+1)(\lambda)-2 K=0 \\
\lambda=\frac{-1 \pm \sqrt{1+8 K}}{2}
\end{array}
$$

Need $\operatorname{Re}\{\lambda\}<0$:

$$
\begin{array}{r}
\operatorname{Re}\{-1+\sqrt{1+8 k}\}<0 \\
\operatorname{Re}\{\sqrt{1+8 k}\}<1
\end{array}
$$

$$
K<0
$$

Problem 4 (25 points)

Consider the system shown below. Something similar was built in 1996 by Matt Greuel and Dan Logue as a senior design project. The idea is to use the moving member as a projectile, accelerated by magnetic energy.

The flux linkage is found to be:

$$
\lambda(i, x)=\left\{\begin{array}{cl}
\mu_{0}\left(\frac{2 x+0.01}{44 \times 10^{-6}}\right) i & x \in[0,0.01 \mathrm{~m}] \\
\mu_{0}\left(\frac{0.03}{44 \times 10^{-6}}\right) i & x \in[0.01 \mathrm{~m}, 0.05 \mathrm{~m}]
\end{array}\right.
$$

a) Find co-energy W_{m}^{\prime} for the two intervals in x given (8 points)
b) Find force of electric origin f^{e} for the two intervals in x given (7 points)
c) Find EFE and EFM as the system proceeds through the following sequence (10 points):
i. From $\mathrm{x}=\mathrm{i}=0$ to $\mathrm{x}=0, \mathrm{i}=10 \mathrm{~A}$
ii. From $\mathrm{x}=0$ to $\mathrm{x}=0.01 \mathrm{~m}$ with constant current $(\mathrm{i}=10 \mathrm{~A})$
iii. From $\mathrm{i}=10$ to $\mathrm{i}=0$ with constant position $(\mathrm{x}=0.01 \mathrm{~m})$
4. a) $x \in[0,0.01]: \omega_{m}^{\prime}=\mu_{0}\left(\frac{2 x+0.01}{2.44 \times 10^{-6}}\right) i^{2}=(0.02856 x+142.8 e-6) i^{2}$

$$
x \in[0.01,0.05]: w_{m}^{\prime}=\mu_{0}\left(\frac{0.03}{2.44 \times 10^{-6}}\right) i^{2}=428.4 e^{-6} i^{2}
$$

b)

$$
\begin{aligned}
& x \in[0,0.01]: f^{e}=0.02856 i^{2} \\
& x \in[0.01,0.05]: f^{e}=0
\end{aligned}
$$

C)

$$
\begin{aligned}
& \text { i) } E F E=\left.\int_{0}^{\lambda_{f}} \frac{44 e-6}{\mu_{0}(2 x+0.01)}\right|_{x=0} \lambda d \lambda=\frac{1}{2} \frac{44 e-6}{0.01 \mu_{0}} \lambda_{f}^{2} \\
& \quad \lambda_{f}=\mu_{0} \cdot \frac{2(0)+0.01}{44 e-6} \cdot 10=2.856 e-3 \\
& D F E=14.28 \mathrm{~mJ} \\
& \Delta X=0 \Rightarrow E F H=0
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \text { FM } \left.=-\int f^{2} d x=-\left.\int_{0}^{0.01} 0.02856 i^{2}\right|_{i=10} d x=-6.02856\right)\left(10^{2}\right)(0.01) \\
& E F M=-28.56 \mathrm{~mJ} \\
& E F E=\int i d \lambda=\int 10 d \lambda=\left.10 \lambda\right|_{\lambda_{0}} ^{\lambda_{f}}
\end{aligned}
$$

this $\lambda_{0}=$ above $\lambda_{t}=2.856 \mathrm{e}-3$

$$
\text { this } \lambda_{f}=\mu_{0}\left(\frac{0.03}{44 e^{7}}\right)(10)=8.568 \mathrm{e}-3
$$

$$
E F E=57.12 \mathrm{~mJ}
$$

iii) $E F E=\int i d d=\int_{\lambda_{0}}^{0} \frac{44 e-6}{0.03 \mu_{0}} d d d=\left.\frac{44 e-6}{2 \times 0.03 \mu_{0}} d^{2}\right|_{d_{0}} ^{0}$
this $d_{0}=$ above $d_{f}=8.568 \mathrm{e}^{-3}$
$E F E=-42.84 \mathrm{~mJ}$
$E F M=0 \quad(\Delta x=0)$

