ACE 330 Exam 1: Fall 2019
90 minutes J. Schuh and R. Chang
Section (Check one)
MWF 10am \qquad MWF 2 pm \qquad

1. \qquad /25
2. \qquad /25
3. \qquad /25
4. \qquad /25

TOTAL \qquad /100

USEFUL INFORMATION

$\sin (\mathrm{x})=\cos \left(\mathrm{x}-90^{\circ}\right)$	$\bar{V}=\bar{Z} \bar{I} \quad \bar{S}=\bar{V} \bar{I}^{*}=P+j Q \quad \bar{S}_{3 \varphi}=\sqrt{3} V_{L} I_{L} \angle \theta$	
$0<\theta<180^{\circ}($ lag $)$	$I_{L}=\sqrt{3} I_{\varphi}$ (delta)	$\bar{Z}_{Y}=\bar{Z}_{\Delta} / 3$
$-180^{\circ}<\theta<0$ (lead)	$V_{L}=\sqrt{3} V_{\varphi}$ (wye)	$\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$

$A B C$ phase sequence has A at $\mathbf{0 , B}$ at $\mathbf{- 1 2 0 ^ { \circ }}$, and C at $+120^{\circ}$

$\int \underline{H} \cdot \underline{d l}=\int \underline{J_{f}} \cdot \hat{n} d A \quad \int \underline{E} \cdot \underline{d l}=-\frac{d}{d t}\left(\int \underline{B} \cdot \hat{n} d A\right) \quad \mathcal{R}=\frac{l}{\mu A} \quad N i=\mathcal{R} \varphi$
$\varphi=B A$
$\lambda=N \varphi=L i$ (if linear)
$v=\frac{d \lambda}{d t} \quad k=\frac{M}{\sqrt{L_{1} L_{2}}}$
$1 \mathrm{hp}=746 \mathrm{~W}$

Problem 1 (25 Points)
A single phase source is serving three loads connected in parallel, through a feeder with impedance $\bar{Z}_{\text {feeder }}=1+j 2 \Omega$.

- Load 1 is an impedance of $30+j 40 \Omega$.
- Load 2 draws 200 W at a lagging PF of 0.8.
- Load 3 draws 1 A at a leading PF of 0.6.

The voltage across the loads is $\bar{V}_{\text {load }}=100 \angle 0^{\circ} \mathrm{V}$.
a) Compute the current phasors \bar{I}_{1}, \bar{I}_{2}, and \bar{I}_{3} for each of the three loads (20 points total).

$$
\begin{aligned}
\bar{V}_{L} & =100 \angle 0^{\circ} \mathrm{V} \\
\bar{T}_{1} & =\frac{V_{L}}{\bar{Z}_{1}} \\
\bar{Z}_{1} & =30+40 \Omega \\
& =50 \angle 53.13^{\circ} \Omega \\
{\overline{I_{1}}}_{1} & =\frac{100 \angle 0^{\circ}}{50 \angle 53.13^{\circ}} \Rightarrow \bar{I}_{1}=2 \angle 53.13^{\circ} \mathrm{A}
\end{aligned}
$$

$$
\begin{aligned}
& P_{2}=V I_{2}\left(P P_{E}\right) \\
& I_{2}=\frac{P_{2}}{V\left(P F_{2}\right)} \Rightarrow I_{2}=\frac{200}{100(0.8)} \Rightarrow \begin{array}{l}
I_{2}=2.5 \mathrm{~A} \\
\theta_{i 2}=-\cos ^{-1}(0.8)=-36.87^{\circ} \\
I_{2}=2.5 \angle-36.80^{\circ} \mathrm{A}
\end{array}
\end{aligned}
$$

c) What is the source voltage $\bar{V}_{\text {source }}$? (3 points)

$$
\begin{aligned}
\bar{I}_{\text {tot }} & =\bar{I}_{1}+\bar{I}_{2}+\bar{I}_{3} \\
& =(1.2-j 1.6)+(2-j 1.5)+(0.6+j 0.8) \\
& =3.8-j 2.3 \mathrm{~A} \\
& =4.44 \mathrm{~L}-31.18^{\circ} \mathrm{A} \\
\bar{V}_{S} & =\bar{V}_{\text {lad }}+\bar{Z}_{\text {line }} \bar{I}_{\text {tot }} \\
& =100 \angle 0^{\circ}+\left(2 . 2 4 (6 3 . 4 3 ^ { \circ }) \left(4.44\left(-31.18^{\circ}\right)\right.\right. \\
& =100<0^{\circ}+9.9456 / 32.25^{\circ} \\
\bar{V}_{S} & =108.41+j 5307 \mathrm{~V} \\
& =108.54 / 2.80^{\circ} \mathrm{V}
\end{aligned}
$$

d) What is the power factor at the source? State whether it is leading or lagging. (1 point)

$$
\begin{gathered}
\theta_{3}=(2.80-[-31.18])=33.98 \\
P F=0.829199 \mathrm{ging}
\end{gathered}
$$

e) What is the power factor at the load? State whether it is leading or lagging. (1 point)

$$
\begin{aligned}
& \theta=31.18^{\circ} \\
& P F=0.856 \text { lagging }
\end{aligned}
$$

Problem 2 (25 Points)

A Wye-connected three-phase generator delivers 1200 kVA at 0.6 PF lagging and 4160 volt (line-to-line) to the following loads in parallel.

- Load 1 is connected in Wye, and draws a total of 300 kW at unity power factor.
- Load 2 is an impedance load connected in Delta, with unknown per-phase impedance \bar{Z}.
a) Draw the three-phase circuit diagram. Label all relevant instances of the following:
- Phase-to-neutral voltage phasor (e.g. $10 \angle 50^{\circ} \mathrm{V}$).
- Per-phase impedance for load 2 as symbolic expressions (e.g. $\bar{Z} / \sqrt{5} \Omega$). Include polarity markers ($+/-$) in all of your voltage labels. (11 points)

b) Draw the single-phase equivalent circuit for phase a. Label one instance of the following:
- Voltage phasor (e.g. $10 \angle 50^{\circ} \mathrm{V}$).
- Power for the generator in terms of kVA and PF (e.g. 10 kVA at 0.1 PF leading).
- Power for load 1 in terms of kVA and PF (e.g. 10 kVA at 0.1 PF leading).
- Impedance for load 2 as a symbolic expression (e.g. $\bar{Z} / \sqrt{5} \Omega$).

All quantities should be stated in per-phase values. (6 points)

d) How much three-phase kVARs do we need to bring the combined power factor to unity? How would you connect the capacitors (in Wye or Delta) and why? (3 points)

$$
\begin{aligned}
\bar{s}_{3 \phi} & =1200 / 53.10^{\circ} \mathrm{kVA} \\
& =720+j 960 \mathrm{kVA}
\end{aligned}
$$

Add 960 kVAR of capacitance
Delta: lower capacitance needed to get given power, bower phase current Wye: lower phase voltage
Either: Complex power equation is the same for wee and Delta
e) Compute the numerical value for the unknown impedance \bar{Z}. (5 points)

$$
\begin{aligned}
\bar{S}_{2} & =\bar{S}_{\text {tot }}-\bar{S}_{1} \\
& =420+j 960 \mathrm{kVA} \\
& =1047.85 \angle 66.37^{\circ} \\
\bar{S}_{2} & =3 \bar{V}_{L} \bar{I}_{\phi}^{*} \Rightarrow \quad \bar{S}_{2}=\frac{3 V_{L}^{2}}{\bar{Z}^{*}} \Rightarrow \quad \bar{Z}=\left(\frac{3 V_{L}^{2}}{\bar{S}_{2}}\right)^{*} \\
& \bar{I}_{\phi}
\end{aligned}=\frac{V_{L}}{\bar{Z}} \quad \bar{Z}=49.54 \angle 66.37^{\circ} \Omega,
$$

Problem 3 (25 Points)

A coil is wrapped 300 times around an iron core with the given dimensions and a depth of 2 cm into the page. The iron has a permeability $\mu=2000 \mu_{0}$ and contains an air gap of $g=2 \mathrm{~mm}$. Fringing effects can be neglected.
a) Draw the magnetic path through the iron core on the figure above and draw the corresponding magnetic equivalent circuit. (15 points).

$$
\begin{aligned}
& R_{1}=\frac{33 \mathrm{~cm}}{2000 \mu_{0}\left(4 \mathrm{~cm}^{2}\right)} \Rightarrow R_{1}=3.283 \times 10^{5} \mathrm{At} / \mathrm{wb} \\
& R_{2}=\frac{33 \mathrm{~cm}-2 \mathrm{~mm}}{2000 \mu_{0}\left(4 \mathrm{~cm}^{2}\right)} \Rightarrow R_{2}=3.263 \times 10^{5} \mathrm{At} / \mathrm{wb}^{2} \\
& R_{3}=\frac{13 \mathrm{~cm}}{2000 \mu_{b}\left(4 \mathrm{~cm}^{2}\right)} \Rightarrow R_{3}=1.293 \times 10^{5} \mathrm{At} / \mathrm{\omega b} \\
& R_{g}=\frac{2 \mathrm{mma}}{\mu_{0}\left(4 \mathrm{~cm}^{2}\right)} \Rightarrow R_{g}=3.979 \times 10^{6} \mathrm{At} / \mathrm{\omega b}
\end{aligned}
$$

b) What is the total flux ϕ through the circuit? (7 points)

$$
\begin{aligned}
N_{i} & =\phi R_{\text {tot }} \\
R_{\text {tot }} & =\left(\frac{1}{R_{3}}+\frac{1}{R_{2}+R_{4}}\right)^{-1}+R_{1} \\
& =4.538 \times 10^{5} \mathrm{At} / \mathrm{Wb}
\end{aligned}
$$

$$
300 i=4.538 \times 10^{5} \phi
$$

$$
\phi=6.610 \times 10^{-4} i
$$

c) What is the inductance of the coil? (3 points)

$$
\begin{aligned}
& \lambda=N \phi=L i \\
& \lambda=300\left(6.610 \times 10^{-4}\right) i \\
& \lambda=0.198 i \\
& L=0.198 \mathrm{H}
\end{aligned}
$$

Problem 4 (25 Points)

Two coils are wrapped around an iron core with the given dimensions and depth of 3 cm into the page. Coil 1 contains 400 turns and Coil 2 contains 200 turns. The iron has a permeability $\mu=1500 \mu_{0}$ and contains an air gap of $g=4 \mathrm{~mm}$. Fringing effects can be neglected.
a) Draw on the figure above where the dot marks should go for each coil. (2 points)
b) What is the self-inductance for each coil $\left(L_{1}\right.$ and $\left.L_{2}\right)$ and the mutual inductance between the two coils (M)? (18 points)

$N_{1} i_{1}=R_{1} \phi_{1}+\left(R_{2}+R_{g}\right)\left(\phi_{1}+\phi_{2}\right)$
$\frac{-N_{2} i_{2}=R_{1} \phi_{2}+\left(R_{2}+R_{2}\right)\left(\phi_{1}+\phi_{2}\right)}{N_{1} i_{1}-N_{2} i_{2}=R_{1}\left(\phi_{1}-\phi_{2}\right)}$ $\phi_{1}=\frac{N_{1} i_{1}-N_{2} i_{2}}{R_{1}}+Q_{2}$
$\phi_{1}=7.034 \times 10^{-4} i_{1}-1.669 \times 10^{-4} i_{2}$
$\lambda_{1}=N_{1} \phi_{1}$
$\lambda_{1}=0.2814 i_{1}-0.06676 i_{2}$
$L_{1}=0.2814 \mathrm{H}$ $L_{2}=0.01758 \mathrm{H}$ $M=0.0667 \mathrm{H}$

$$
N_{2} i_{2}=\left(R_{1}+R_{2}+R_{2}\right) \phi_{2}+\left(R_{2}+R_{3}\right) \phi_{1}
$$

$$
N_{2} i_{2}=\left(R_{1}+R_{0}+R_{9}\right) \phi_{2}+\left(R_{1}+R_{2}\right)\left[\frac{\mu_{1} i_{1}-N_{2} i_{2}}{R_{1}}+\phi_{2}\right]
$$

$$
=\left(R_{1}+2 R_{1}+2 R_{3}\right) \phi_{2}+\left(\frac{R_{+}+R_{2} R_{1}}{R_{1}}\right)\left[N_{1} i_{1}-N_{2} i\right]
$$

$$
-\left(\frac{R_{1}+R_{3}}{R_{1}}\right) N_{1} i_{1}+\left(1+\frac{R}{2} R_{3}\right) N_{i} i_{2}=\left(R_{1}+2 R_{1}+2 R_{3}\right) \otimes_{2}
$$

$$
\phi_{2}=6.674 \times 10^{-4} i_{1}+1.758 \times 10^{-4} i_{2}
$$

$$
\lambda_{2}=N_{2} \phi_{2}
$$

$$
\begin{aligned}
& \lambda_{2}=N_{2} \phi_{2} \\
& \lambda_{2}=-0.06674 i_{1}+0.01758 i_{2}
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}=\frac{33 \mathrm{~cm}}{1500 \mu_{0}\left(6 \mathrm{~cm} \mathrm{~m}^{2}\right)} \Rightarrow R_{1}=2.918 \times 10^{5} \mathrm{At} / \mathrm{\omega}_{6} \\
& R_{c}=\frac{13 \mathrm{~cm}-4 \mathrm{~mm}}{1500 \mu_{0}\left(6 a_{a}^{2}\right)} \Rightarrow R_{c}=1.114 \times 10^{5} \mathrm{At} / \mathrm{\omega}_{\mathrm{b}} \\
& R_{g}=\frac{4 \operatorname{mom}_{0}}{\mu_{0}\left(6 a^{\circ}\right)}=R_{g}=5.305 \times 10^{6} \mathrm{At} / \omega 6
\end{aligned}
$$

c) What is the open circuit voltage measured across Coil 2 if a current of $i_{1}=\sqrt{2}(10) \cos (377 t)$ is applied across Coil 1? Write your answer as a cosine function. (5 points)

$$
\begin{aligned}
& V_{1}=L_{1} \frac{d i_{1}}{d t}-M \frac{d i_{2}}{d t} \\
& V_{2}=-M \frac{d i_{i}}{d t}+L_{2} \frac{d i_{2}}{d t} \\
& \text { Open circuit: } i_{2}=0 \\
& V_{2}=-M \frac{d i_{1}}{d t} \\
& V_{2}=-0.06676(-\sqrt{2}(10)(37) \sin (37 t)) \\
& V_{2}=\sqrt{2}(251.69) \sin (377 t) \\
& V_{2}=\sqrt{2}(251.69) \cos \left(377 t-90^{\circ}\right)
\end{aligned}
$$

(Blank page for extra work)

