ECE330: Power Circuits & Electromechanics Lecture 24. Variable speed drives and the case for power electronics

Prof. Richard Y. Zhang Univ. of Illinois at Urbana-Champaign ryz@illinois.edu

Torque-Speed / Power-Speed Curve

Torque

1200

Machine speed (RPM)

1800

15

10

1

Current (A) or torque (N•m)

60

40

20

0 0 Current

600

Induction machine: Industrial workhorse

Cheap Rugged Reliable Efficient Powerful Compact Lowmaintence

Historically: Difficult to start, difficult to control

- Pumps
- Fans
- Compressors
- Saws
- Drills
- Turbines
- Elevators

Today

- · Speed control without power electronics
- · Speed control with power electronics
- · Variable speed drives in electric vehicles, robotics, renewable energy, and other applications

3

Recall derivation L_r-M L_a-M \overline{I}_a Fake $\frac{3}{8}M$ $V_a \angle 0^{\circ}$ R./s jΧ ŞR/s *V*∠0° $\tan \phi = X/R$ $3V^2$ $\overline{R\omega_s} \frac{1 + s^2 \tan^2 \phi}{1 + s^2 \tan^2 \phi}$

6

Image: Youtube.com/LearnEngine

ering

Recall: Max torque

$$T^{e} = \frac{3V^{2}}{R\omega_{s}} \frac{s}{1 + s^{2} \tan^{2} \phi}$$
$$\tan \phi = X/R$$

Theorem.

$$s_{max} = \frac{\pm 1}{\tan \phi}$$
 $T_{max}^e = \pm \frac{3}{2} \frac{V^2}{X\omega}$

_

10

12

7

9

11

Varying the rotor resistance $T^{e} = \frac{3V^{2}}{R\omega_{s}} \frac{s}{1+s^{2}\tan^{2}\phi} \qquad T^{e}_{max} = \pm \frac{3}{2} \frac{V^{2}}{X\omega_{s}}$ $V = 1.0 \text{ [V], L} = 1.0 \text{ [H], } \omega_{s} = 1.0 \text{ [rad/s]}$

0.5

Rotor Speed [rad/s]

Today

- · Speed control without power electronics
- · Speed control with power electronics
- Variable speed drives in electric vehicles, robotics, renewable energy, and other applications

13 14

15 16

Voltage-frequency control V/f = 6.3 [V/Hz], L = 1.0 [H], R = 0.2 [Ω] Historically, a luxury for high-performance applications. Nowadays cheap and ubiquitous, thanks to advances in power electronics. Completely displaced DC machines. Future: Integrated machines and power electronics. - See Banerjee / Haran research groups at U of I

20

Today

- Speed control <u>without</u> power electronics
- Speed control with power electronics
- · Variable speed drives in electric vehicles, robotics, renewable energy, and other applications

Original Tesla Roadster (2008)

21 22

23 24

