

2

Image: Youtube.com/LearnEngineering

Aluminium
(for conductivity)

Squirrel cage rotor

Use induced current to excite rotor
Cheap, rugged, zero-maintence

3

6 7

Today

- Electrical model
- · Mechanical model

Next lecture: Torque-speed characteristic

Preliminary: Definition of Slip $\frac{\text{Synchronous}}{\text{speed}} = 60 \text{ m [rad/s]} = 1800 \text{ rpm}$ $\frac{\text{Synchronous}}{\omega_m} = \frac{2}{p} \omega_s$ $\frac{\text{Synchronous}}{\text{frequency}} = 120 \text{ m [rad/s]} = 60 \text{ [Hz]}$ $\omega_m = \frac{2}{p} (1-s) \omega_s$ $\frac{\text{Slip}}{\text{Idimensionless]}}$ Rotor frequency $\omega_r = s\omega_s$ Efficiency $\eta \approx 1-s$

8

Recall: Synch mach $i_a(t) + c$ $i_r(t) + d$ $i_r(t) + d$ $i_r(t) + d$ $v_a(t) = L_a \frac{di_a}{dt} + M_{ar}(t) \frac{d\theta}{dt} + M'_{ar}(\theta) i_r(t) \frac{d\theta}{dt}$ $M \cos(\omega t) \ | dc$

Recall: Synch mach \overline{I}_{a} "torque angle" $\overline{E}_{a} = E \angle \delta$ $\overline{E}_{a} = E \angle \delta$ $\overline{E}_{b} = E \angle (\delta - 120^{\circ})$ \overline{I}_{c} \overline{I}_{c} \overline{I}_{c} $v_{a}(t) = L_{a} \frac{di_{a}}{dt} + M_{ar}(s) \frac{d\overline{I}_{a}}{dt} + M'_{ar}(\theta) i_{r}(t) \frac{d\theta}{dt}$ $M \cos(\omega t) \ \text{Idc}$

11

10

Recall: Synch mach $jX = \overline{I}_a$ \overline{I}_a \overline{I}_a $\overline{E}_a = E \angle \delta$ Single-phase equivalent circuit (this is a physical model) \overline{I}_a \overline{I}_a

Today

Electrical model

· Mechanical model

Next lecture: Torque-speed characteristic

 $\begin{array}{ccc} \textbf{Numerator} & \frac{3}{s} |\bar{I_r}|^2 R_r & \frac{3(1-s)}{s} |\bar{I_r}|^2 R_r \\ & \frac{3}{s} |\bar{I_r}|^2 R_r & \frac{3(1-s)}{s} |\bar{I_r}|^2 R_r \\ \\ \textbf{Denominator} & \omega_m = \frac{2}{p} (1-s) \omega_s \\ & \frac{3}{p \text{hases}} & \frac$

Power

across

Torque [Nm] =

Mechanical power [W]

Output

Mechanical speed [rad/s]

20

A 460V (line-line), 60 Hz, 3 phase, 6-pole machine has a rated speed of 1140 rpm. The rotor has resistance 2Ω and leakage $j3\Omega$. The stator has negligible resistance and leakage.

- a) What is the frequency of rotor currents in Hz?
- b) What is the torque at rated speed?

22

21

