

1

3

5

Last time: The world of electric machines

Switching DC fields

- Brushed DC motor
- Reluctance machine
- Stepper motor
- Brushless DC motor

Rotating AC fields

\rightarrow - Synchronous machine
\rightarrow - Induction machine
Our focus in ECE 330

2

4

Today: Synchronous machine model

 Flux linkage equation$$
\lambda(t)=\lambda(i, \theta)
$$

Voltage of mechanical origin

$$
v(t)=\frac{\mathrm{d} \lambda}{\mathrm{~d} t}=\underbrace{\frac{\partial \lambda}{\partial i} \frac{\mathrm{~d} i}{\mathrm{~d} t}}_{L(\theta)}+\underbrace{\frac{\partial \lambda}{\partial \theta} \frac{\mathrm{d} \theta}{\mathrm{~d} t}}_{e(t)}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Energy } \\
\text { conversion in } \\
\text { a loop }
\end{array} \\
& \text { Average power } \\
& \text { Average torque } \\
& \text { EFE }\left.\left.\right|_{\text {cycle }} \cdot \frac{\mathrm{EFE}}{\mathrm{EFE}}\right|_{\text {cycle }}=P_{\text {cycle }}=-\tau_{\text {av }} \cdot \operatorname{dist} \\
& \left.\mathrm{EFM}\right|_{\text {cycle }} \\
& \operatorname{Re}\left\{\bar{V} \bar{I}^{*}\right\} \\
& \left.\theta^{\prime}\right) \mathrm{d} \lambda^{\prime}
\end{aligned} \oint_{C} \frac{-\tau\left(\lambda^{\prime}, \theta^{\prime}\right) \mathrm{d} \theta^{\prime}}{}
$$

Today

- Mechanical model (torque vs speed)
- Electrical model (current vs voltage)
- Example analysis

7

Average torque from average power

EFE $\left.\right|_{\text {cycle }} \cdot$ freq $=P_{\text {av }}$
EFM $\left.\right|_{\text {cycle }}=-\tau_{\text {av }} \cdot$ dist

$$
\tau_{\mathrm{av}}=\frac{P_{\mathrm{av}}}{\text { freq } \cdot \text { dist }}=\frac{P_{\mathrm{av}}}{\text { freq } \cdot 2 \pi \cdot(2 / p)}=\frac{P_{\mathrm{av}}}{\omega_{m}}
$$

Average torque $=\frac{\text { Average power }}{\text { Mechanical rad/s }}$

Half the speed, same power, then twice the torque Sacrifice speed to increase torque

9

Preliminary: Interlocking loops

$$
\begin{aligned}
& -i_{2}-i_{1}+i_{1}+i_{2} \\
& \lambda_{1}=+L_{1} i_{1}+|M| i_{2} \\
& \bullet \bullet \otimes \otimes \\
& \lambda_{2}=+|M| i_{1}+L_{2} i_{2} \\
& -i_{2}+i_{1}-i_{1}+i_{2} \\
& \lambda_{1}=+L_{1} i_{1}-|M| i_{2} \\
& \text { - } \otimes \otimes \otimes \\
& \lambda_{2}=-|M| i_{1}+L_{2} i_{2} \\
& -\mathrm{i}_{2} \odot{ }_{-\mathrm{i}_{1}}^{\otimes} \bullet \stackrel{+\mathrm{i}_{1}}{\otimes}+\mathrm{i}_{2} \\
& \lambda_{1}=+L_{1} i_{1} \\
& \lambda_{2}=\quad+L_{2} i_{2}
\end{aligned}
$$

Average torque from average power

$$
0=\oint_{C} \frac{i\left(\lambda^{\prime}, \theta^{\prime}\right) \mathrm{d} \lambda^{\prime}}{\mathrm{EFE}_{\mathrm{cycle}}}+\oint_{C} \frac{-\tau\left(\lambda^{\prime}, \theta^{\prime}\right) \mathrm{d} \theta^{\prime}}{\left.\mathrm{EFM}\right|_{\mathrm{cycle}}}
$$

EFE $\left.\right|_{\text {cycle }} \cdot$ freq $=P_{\text {av }}$
$\left.\mathrm{EFM}\right|_{\text {cycle }}=-\tau_{\mathrm{av}} \cdot$ dist
Pav = 1 W , Tav = ? Nm
A) $2 \pi / 60$
B) $1 / 60 \pi \longleftarrow$
C) $2 \pi / 60$
D) $1 / 120 \pi$
E) $1 / 240 \pi$

4-pole @ 60 Hz 1800 rpm
Freq $=60 \mathrm{~Hz}$ (as usual)
Dist $=$ half-rotation $=\pi$
8

Today

- Mechanical model (torque vs speed)
- Electrical model (current vs voltage)
- Example analysis

Inductance model

13

15

Example 6.4

Example 6.4 A two-pole, three-phase, 60 Hz , wye-connected synchronc machine has synchronous reactance $x_{s}=2 \Omega$ per phase. The machin operating as a generator delivering power at a voltage of 1905 V per ph The current is 350 A and the PF of the load is 0.8 lagging. Find $E_{a r}, \delta$, the torque of electric origin.

Rephrase into a feeder problem

A three-phase source is serving a single load connected through a feeder with impedance $\mathrm{j} 2 \Omega$. The load draws 350 A per phase at a lagging PF of 0.8 . The voltage across the load is 1905 V (phase-to-neutral).
a) Compute the source voltage as a complex phasor.
b) Compute the power consumed at the load and divide it by 120π, the mech speed of a 2 -pole machine.

4-pole, $60 \mathrm{~Hz}, \mathrm{M}=1 \mathrm{H}, \mathrm{Ir}=1 \mathrm{~A}$. | Eb | = ? V
A) $2 \pi / 60$
B) $60 \pi / \operatorname{sqrt}(2)$
C) 60π
D) $120 \pi / \operatorname{sqrt}(2)$
E) 120π
electrical domain ignores number of poles

Today

- Mechanical model (torque vs speed)
- Electrical model (current vs voltage)
- Example analysis

Example 6.4

A three-phase source is serving a single load connected through a feeder with impedance $\mathrm{j} 2 \Omega$. The load draws 350 A per phase at a lagging PF of 0.8 . The voltage across the load is 1905 V (phase-to-neutral).
a) Compute the source voltage as a complex phasor.
b) Compute the power consumed at the load and divide it by 120π, the mech speed of a 2 -pole machine.

