ECE330: Power Circuits \& Electromechanics Lecture 15. Nonlinear materials and multiple coils

Prof. Richard Y. Zhang
Univ. of Illinois at Urbana-Champaign ryz@illinois.edu


1


3


5

## Schedule

- Fri 3/13: Energy via line integrals
- Mon 3/16: Spring break
- Wed 3/18: Spring break
- Fri 3/20: Spring break
- Mon 3/23: Co-energy via line integrals
- Wed 3/11: Homework 6 + Review
- Fri 3/27: Nonlinear materials and multiple coils
- Mon 3/30: Conversion cycles

2

## Today

- Nonlinear inductors
- Two-coil inductors
- Bonus: Inductance matrix

Electrically linear inductor


6


7


9

| E and co-E in a realistic inductor |  |
| :---: | :---: |
| $\begin{gathered} \text { Energy }(\lambda, x)=\int_{0}^{i} i\left(\lambda^{\prime}, x\right) \mathrm{d} \lambda^{\prime} \\ \text { Co-energy }(i, x)=\int_{0}^{i} \lambda\left(i^{\prime}, x\right) \mathrm{d} i^{\prime} \end{gathered}$ |  |
|  |  |
| In general, | $\lambda(i, x)=\frac{\exp (i / x)-1}{\exp (i / x)+1}$ |

11

| Computing forces$\lambda(i, x)=\frac{\exp (i / x)-1}{\exp (i / x)+1}$ | *WolframAlpha |
| :---: | :---: |
|  | integrate (exp(l/X) -1)/(exp(iXX) +1) di |
|  |  |
|  | Indefinte minepat Ampoumsat emm |
| $\text { Energy }=\int_{0}^{\lambda} i\left(\lambda^{\prime}, x\right) \mathrm{d} \lambda^{\prime}$ | $\int \frac{\cos \left(\frac{1}{2}\right)-1}{\cos \left(\frac{1}{2}\right)+1 i=2 x \log (\underline{2}+1)-i+\operatorname{costant}}$ |
| $\begin{aligned} \text { Co-energy }=\int_{0}^{i} \lambda\left(i^{\prime}, x\right) \mathrm{d} i^{\prime} & =\int_{0}^{i} \frac{\exp \left(i^{\prime} / x\right)-1}{\exp \left(i^{\prime} / x\right)+1} \mathrm{~d} i^{\prime} \\ & =2 x \log \left(\frac{\exp (i / x)+1}{2}\right)-i \end{aligned}$ |  |

8


10

## Aside: Magnetic materials

- Inherent atomic currents
- Most materials: cancelation
- Magnetic materials: summation



13


15


## Today

- Nonlinear inductors
- Two-coil inductors
- Bonus: Inductance matrix

14


16

## Energy over two coils

$$
\begin{aligned}
& \lambda_{s}=L_{s} i_{s}+M(\theta) i_{r} \\
& \lambda_{r}=M(\theta) i_{s}+L_{r} i_{r}
\end{aligned}
$$



19

## Co-Energy over two coils

$$
\begin{aligned}
& \lambda_{s}=L_{s} i_{s}+M(\theta) i_{r} \\
& \lambda_{r}=M(\theta) i_{s}+L_{r} i_{r}
\end{aligned}
$$

## 21

$\operatorname{Energy}\left(\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots, x\right)=\int_{0}^{\lambda_{1}} i_{1}\left(\lambda_{1}^{\prime}, 0,0, \ldots, x\right) \mathrm{d} \lambda_{1}^{\prime}$
always fixed $+\int_{0}^{\lambda_{2}} i_{2}\left(\lambda_{1}, \lambda_{2}^{\prime}, 0, \ldots, x\right) \mathrm{d} \lambda_{2}^{\prime}$
"Charge one
$+\int_{0}^{\lambda_{3}} i_{3}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}^{\prime}, \ldots, x\right) \mathrm{d} \lambda_{3}^{\prime}$
coil at a time"
$\operatorname{Co}-\operatorname{energy}\left(i_{1}, i_{2}, i_{3}, \ldots, x\right)=\int_{0}^{i_{1}} \lambda_{1}\left(i_{1}^{\prime}, 0,0, \ldots, x\right) \mathrm{d} i_{1}^{\prime}$
$+\int_{0}^{i_{2}} \lambda_{2}\left(i_{1}, i_{2}^{\prime}, 0, \ldots, x\right) \mathrm{d} i_{2}^{\prime}$
Units: Joules for both E and co-E

$$
+\int_{0}^{i_{3}} \lambda_{3}\left(i_{1}, i_{2}, i_{3}^{\prime}, \ldots, x\right) \mathrm{d} i_{3}^{\prime}
$$

$$
+\cdots
$$

$\operatorname{Energy}\left(\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots, x\right)=\int_{0}^{\lambda_{1}} i_{1}\left(\lambda_{1}^{\prime}, 0,0, \ldots, x\right) \mathrm{d} \lambda_{1}^{\prime}$

$$
\begin{array}{ll} 
& +\int_{0}^{\lambda_{2}} i_{2}\left(\lambda_{1}, \lambda_{2}^{\prime}, 0, \ldots, x\right) \mathrm{d} \lambda_{2}^{\prime} \\
\text { "Chargs fixed one } & +\int_{0}^{\lambda_{3}} i_{3}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}^{\prime}, \ldots, x\right) \mathrm{d} \lambda_{3}^{\prime} \\
\text { coil at a time" } & +\cdots
\end{array}
$$

"Charge one

20


## Today

- Nonlinear inductors
- Two-coil inductors
- Bonus: Inductance matrix


## Aside: Inductance matrix

Optional, but makes life significantly easier

$$
\left[\begin{array}{l}
\lambda_{s} \\
\lambda_{r}
\end{array}\right]=\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right]\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right]
$$

25

Speed voltage (Inductance matrix)
$\left[\begin{array}{l}\lambda_{s} \\ \lambda_{r}\end{array}\right]=\left[\begin{array}{cc}L_{s} & M(\theta) \\ M(\theta) & L_{r}\end{array}\right]\left[\begin{array}{l}i_{s} \\ i_{r}\end{array}\right]$
$\left[\begin{array}{c}v_{s} \\ v_{r}\end{array}\right]=\frac{\left[\begin{array}{cc}L_{s} & M(\theta) \\ M(\theta) & L_{r}\end{array}\right] \frac{\mathrm{d}}{\mathrm{d} t}\left[\begin{array}{l}i_{s} \\ i_{r}\end{array}\right]}{\text { Transformer voltage }}+\frac{\left[\begin{array}{cc}0 & M^{\prime}(\theta) \\ M^{\prime}(\theta) & 0\end{array}\right]\left[\begin{array}{l}i_{s} \\ i_{r} \\ i_{r}\end{array}\right] \frac{\mathrm{d} \theta}{\mathrm{d} t}}{\text { Speed voltage }}$
Example: if $M(\theta)=M_{0} \cos \theta$, then
$\left[\begin{array}{l}v_{s} \\ v_{r}\end{array}\right]=\left[\begin{array}{cc}L_{s} & M_{0} \cos \theta \\ M_{0} \cos \theta & L_{r}\end{array}\right] \frac{\mathrm{d}}{\mathrm{d} t}\left[\begin{array}{l}i_{s} \\ i_{r}\end{array}\right]$
$+\left[\begin{array}{cc}0 & -M_{0} \sin \theta \\ -M_{0} \sin \theta & 0\end{array}\right]\left[\begin{array}{l}i_{s} \\ i_{r}\end{array}\right] \frac{\mathrm{d} \theta}{\mathrm{d} t}$

27

Speed voltage (Inductance matrix)

$$
\begin{aligned}
& {\left[\begin{array}{c}
\lambda_{s} \\
\lambda_{r}
\end{array}\right]=\underset{\text { Matrix-valued function of } \theta}{\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right]}\left[\begin{array}{c}
i_{s} \\
i_{r}
\end{array}\right]} \\
& {\left[\begin{array}{l}
v_{s} \\
v_{r}
\end{array}\right]=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right]\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right]\right) \quad M^{\prime}(\theta)=\frac{\partial}{\partial \theta} M(\theta)} \\
& =\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right] \frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right]+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right]\right)\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right] \frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right]}_{\text {Transformer voltage }}+\frac{\text { Speed voltage }}{\left[\begin{array}{cc}
0 & M^{\prime}(\theta) \\
M^{\prime}(\theta) & 0
\end{array}\right]\left[\begin{array}{l}
i_{s} \\
i_{r}
\end{array}\right] \frac{\mathrm{d} \theta}{\mathrm{~d} t}}
\end{aligned}
$$

26

Energy and Co-Energy (Inductance matrix)

Theorem. If $\lambda=L(\theta)$ i, then stored energy equals

$$
E=\underset{\begin{array}{c}
\text { Co-energy } \\
\text { function of } \\
\text { current }
\end{array}}{\frac{1}{2} i^{T} L(\theta) i}=\begin{gathered}
\begin{array}{c}
\text { Energy } \\
\text { function of } \\
\text { flux }
\end{array} \\
\frac{1}{2} \lambda^{T} L(\theta)^{-1} \lambda[\mathrm{~J}] \\
\hline
\end{gathered}
$$

Torque, Co-Energy (Inductance matrix)

$$
\begin{aligned}
& {\left[\begin{array}{c}
\lambda_{s} \\
\lambda_{r}
\end{array}\right]=\left[\begin{array}{cc}
L_{s} & M(\theta) \\
M(\theta) & L_{r}
\end{array}\right]\left[\begin{array}{c}
i_{s} \\
i_{r}
\end{array}\right] \begin{array}{c}
\text { Textbook } \\
\text { pp. 110-114 }
\end{array}} \\
& \text { Matrix-valued function of } \theta \\
& \tau^{e}=+\frac{\partial}{\partial \theta} \text { [Co-energy] } \quad E=\frac{1}{2} i^{T} L(\theta) i \\
& =\frac{1}{2} i^{T} L^{\prime}(\theta) i \quad \begin{array}{l}
\text { Co-energy } \\
\text { function of } \\
\text { current }
\end{array} \\
& =i_{s} i_{r} M^{\prime}(\theta) \quad L^{\prime}(\theta)=\left[\begin{array}{cc}
0 & M^{\prime}(\theta) \\
M^{\prime}(\theta) & 0
\end{array}\right]
\end{aligned}
$$

